
A neurophysiologically plausible population code model
for human contrast discrimination

Laboratory of Experimental Psychology,
University of Leuven, Leuven, BelgiumRobbe L. T. Goris

Technische Universität Berlin, FG Modellierung Kognitiver
Prozesse, Berlin, Germany, &

FRG and Bernstein Center for Computational Neuroscience,
Berlin, GermanyFelix A. Wichmann

Colour and Vision Group, The Institute of Ophthalmology,
London, UKG. Bruce Henning

The pedestal effect is the improvement in the detectability of a sinusoidal grating in the presence of another grating of the
same orientation, spatial frequency, and phaseVusually called the pedestal. Recent evidence has demonstrated that the
pedestal effect is differently modified by spectrally flat and notch-filtered noise: The pedestal effect is reduced in flat noise
but virtually disappears in the presence of notched noise (G. B. Henning & F. A. Wichmann, 2007). Here we consider a
network consisting of units whose contrast response functions resemble those of the cortical cells believed to underlie
human pattern vision and demonstrate that, when the outputs of multiple units are combined by simple weighted
summationVa heuristic decision rule that resembles optimal information combination and produces a contrast-dependent
weighting profileVthe network produces contrast-discrimination data consistent with psychophysical observations: The
pedestal effect is present without noise, reduced in broadband noise, but almost disappears in notched noise. These
findings follow naturally from the normalization model of simple cells in primary visual cortex, followed by response-based
pooling, and suggest that in processing even low-contrast sinusoidal gratings, the visual system may combine information
across neurons tuned to different spatial frequencies and orientations.
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Introduction

Behavioral evidence from detection experiments that
involve barely visible low-contrast stimuli suggests that
information in the early visual system is analyzed in
spatially localized, spatial-frequency-tuned, orientation-
selective “channels” of limited bandwidth (Blakemore &
Campbell, 1969; Campbell & Robson, 1968; DeValois &
DeValois, 1988; Graham, 1989; Graham & Nachmias,
1971; see Figure 1a). At the neural level, the multidimen-
sional stimulus selectivity of cortical neurons makes
primary visual cortex a likely substrate for these channels
(DeValois & DeValois, 1988; Graham, 1989). Under-
standing the processing of stimuli that are more than just
detectable, however, is a prerequisite for any useful model
of spatial vision. To gain insight into visual processing
of suprathreshold contrasts, sinusoidal contrast discrimi-
nation has been studied extensively (Bird, Henning, &
Wichmann, 2002; Foley, 1994; Goris, Wagemans, &
Wichmann, 2008a; Henning & Wichmann, 2007; Legge
& Foley, 1980; Nachmias & Sansbury, 1974; Wichmann,
1999). One of the main findings of contrast-discrimination

studies is the pedestal effectVthe improved detectability of
a sinusoidal “signal” grating in the presence of a low-
contrast grating with the same spatial frequency, orienta-
tion, and phase as the signal and often called “the pedestal.”
Characteristics of contrast transduction and/or gain-

control mechanisms believed to operate within single
channels have often been inferred from the pedestal effect
on the assumption that stimuli with narrowband spatial-
frequency spectra are processed within a single channel
tuned to the orientation and spatial frequency of the signal
(Foley, 1994; Legge & Foley, 1980; Wichmann, 1999).
This approach has not been without success: The contrast
gain-control model, for instance, makes use of a narrowly
tuned excitatory factor and a broadly tuned divisive
inhibitory factor that give rise to a channel with a
Mexican-hat-shaped weighting function (see Figure 2a)
and explains much of the variance in sinusoidal contrast-
discrimination data (Foley, 1994; Wichmann, 1999).
Further, the gain-control model correctly predicts some
of the ways in which contrast-discrimination performance
changes in the presence of an additional sinusoidal masker
having an orientation other than that of the signal (Foley,
1994).
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However, the assumption that only the most sensitive
channel is monitored has recently been challenged in a
series of contrast-discrimination experiments (Henning &
Wichmann, 2007): The pedestal effect is somewhat
reduced in the presence of broadband noise or when
either low-pass or high-pass noise distant in frequency
from the spatial frequency of the signal is used. But when
the high-pass and low-pass noises are combined to
produce a “notched noise” from which a 1.5-octave wide
notch centered on the signal frequency has been removed,
the pedestal effect all but disappears. As illustrated in
Figure 2, single-channel models like the contrast gain-
control model fail to account for these results.
Many different simulations of the gain-control

modelVmore specifically, Foley’s model 3Vone of which
is illustrated in Figure 2, all predict that the pedestal effect
should be reduced in broadband noise, but persist in
notched noiseVthe opposite of what in fact happens. This
discrepancy may indicate that this implementation of
divisive inhibition is not the appropriate computation to
capture the effects of visual noise. However, in addition,
there is a discrepancy between the deep dip attributed to
single channels by gain-control models, and the mild dip
observed in single cells of the striate cortex (Geisler &
Albrecht, 1997). Thus, a single-channel explanation of the
pedestal effect seems unlikely.
Bayesian models based on single-neuron characteristics

that include the variability of the neurons’ responses may
reconcile the mild dip in single cells and the strong
pedestal effect observed psychophysically, at least when a
“hard” response threshold is assumed (Chirimuuta &
Tolhurst, 2005). Without a response threshold, Bayesian
optimal decoding of single cell responses does not
produce a strong pedestal effect (Chirimuuta & Tolhurst,
2005; Geisler & Albrecht, 1997). In general, neuro-
physiological studies have not demonstrated the necessity
of a response threshold to describe single cell contrast
response functions at a phenomenological level (Miller &
Troyer, 2002). Further, because the aforementioned
Bayesian models do not consider the variability in the
spatial-frequency tuning of cortical neurons, they would
also fail to capture the contrast discrimination in noise
results of Henning and Wichmann (2007). In sum, these
results appear to require a revised model for human
contrast discrimination.
Henning and Wichmann (2007) conclude that the

pedestal effect may stem from the use of contrast
information carried by channels tuned to spatial frequen-
cies other than that of the signal frequency, thereby raising
the important question of how the response of the whole
population of channels is decoded in contrast discrimina-
tion and, indeed, in detection. In this paper, we evaluate the
consequences for contrast discrimination of simple
weighted summationVwhere the contribution of each
channel to detection or discrimination performance is
proportional to its response. In particular, we consider
possible neural correlates of “channels,” where a channel

Figure 1. The multi<channel model of spatial vision. (a) Linear
narrow-band filter responses to an example image. Particular
filters’ spatial-frequency tuning is shown in the main panel and
their response illustrated in the surrounding panels. For simplicity
in the illustration, the cells’ orientation tuning has been ignored.
The weighted sum of their responses approximately produces the
characteristics of the full image. The dashed curve in the main
panel of (a) depicts the overall contrast sensitivity function. (b)
The simulated contrast response functions of two hypothetical
cortical neurons that behave as localized spatial-frequency and
orientation-selective filters. Cell firing rate is plotted as a function
of image contrast, and the two filters are differentially sensitive to
some narrow band stimulus. At all contrasts, the cell that is tuned to
the spatial frequency and orientation spectrum of the image patch
has a stronger response (upper dark line) than a less well-tuned
cell (lower gray line). Note that response saturation of both cells
occurs at the same contrast. (c) The same contrast response
functions, expanded to show the response over the low-contrast
range. At low contrasts, the contrast response function behaves
as a positively accelerating non-linearity (see Finn et al., 2007;
Miller & Troyer, 2002).
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is a set of neurons with similar selectivity for orientation
and spatial frequency. Weighted summation of signals
from neural populations has been suggested to offer a
general, biologically plausible mechanism capable of
approximating ideal observers’ behavior (Deneve, Latham,
& Pouget, 1999; Jazayeri & Movshon, 2006; Pouget,
Zemel, & Dayan, 2000). Further, under many realistic
conditions, employing a simple response-based weighting
heuristic even resembles optimal combination rules.
Here, we simulate a network made up of units whose

contrast response functions resemble those found in cortex
(see Methods). In our simulations, we additionally use the
population distributions of the units’ characteristics even
though information about population distributions is very
limited. The units are restricted to physiologically mea-
sured characteristics to obtain a neurophysiologically
plausible model. Because the neurophysiologically deter-
mined data for cortical cell responses to noise are also very

limited, our implementation of noise effects is necessarily
based on theory-based predictions and simulations. Never-
theless, this implementation is consistent with available
physiological findings and, as we shall see, the simulated
networks predict plausible contrast-discrimination data.
Further, contrary to the suggestion of Henning and
Wichmann (2007), notched noise in our implementation
does not prevent off-frequency looking; rather it modifies
cortical cell activity in such a way that, upon pooling, the
pedestal effect virtually disappears.
Neurophysiological recordings show that as the contrast

of a sinusoidal grating driving cortical cells increases
from zero, the cells’ responses first increase in an
accelerating fashion, remain approximately linear over a
limited contrast range, and then saturate (Albrecht,
Geisler, Frazor, & Crane, 2002; Geisler & Albrecht,
1997) (see Figures 1b and 1c). The saturation level is
often attributed to some form of contrast-gain control.

Figure 2. Simulation of the contrast gain-control model (Foley’s Model 3) in the contrast-discrimination experiments of Henning and
Wichmann (2007). Upper row: illustration of the signal and noise stimuli used in the simulationVfrom left to right: the 4 cycles/deg
sinusoidal signal, broadband noise, and notched noise. Lower row: (a) The difference in contrast sensitivity of the excitatory and inhibitory
channel components as a function of spatial frequency. The narrowly tuned excitatory component and broadly tuned inhibitory component
give rise to a Mexican-hat-shaped channel. (b) The noise-power densities as a function of spatial frequencyVtop: broadband noise (blue),
bottom: notched noise (red). (c) Performance predicted by the gain-control model in the contrast-discrimination experiments of Henning
and Wichmann (2007). Without noise added (green symbols), the model produces a dipper-shaped threshold-versus-contrast function
that closely mimics human data. Inconsistent with human performance, the dip is virtually absent in the presence of broadband noise
(blue symbols). However, the improvement in performance occurs in the presence of notched noise (red symbols), again inconsistent with
human behavior.
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Both non-linearitiesVresponse expansion at low contrasts
and saturation at high contrastsVare usually thought to
be fully expressed at the onset of the response and may
play an important role in enhancing and maintaining
stimulus selectivity (Albrecht et al., 2002; Geisler &
Albrecht, 1997), although the dynamics of the physio-
logical responses are not yet fully understood (Ringach,
Hawken, & Shapley, 1997). Computationally, these prop-
erties are consistent with a model in which a strictly linear
spatiotemporal stage is followed by squaring, then half-
wave rectification, and broadband divisive inhibitionVthe
normalization model (Carandini, Heeger, & Movshon,
1997; Heeger, 1992a, 1992b)Valthough all the properties
may be intrinsic to the feed-forward mechanisms of simple
cells (Carandini, Heeger, & Senn, 2002; Finn, Priebe, &
Ferster, 2007; Freeman, Durand, Kiper, & Carandini,
2002; Miller & Troyer, 2002). The contrast-determined
response saturation allows cortical neurons to signal
information about the location, spatial frequency (or size),
and orientation of local image features with considerable
precision, at the expense of a detailed representation of
contrast information (Albrecht et al., 2002; Geisler &
Albrecht, 1997).
A final and particularly important property of cortical

neurons is the characteristic that the variance of their
responses to a sinusoidal grating is proportional to their
mean response (Albrecht et al., 2002; Geisler & Albrecht,
1997; Vogels, Spileers, & Orban, 1989). We call this
crucial characteristic “the proportionality rule” and imple-
ment it in our network units as a multiplicative noise
source. The simple proportionality relation implies that
the ratio of a cell’s mean response to the standard
deviation of its responsesVits signal-to-noise ratioVwill
increase as the response increases and this leads to the
attractive idea that in combining the responses of many
cells, the visual system would do well to first weight them
by the strength of their response.
In the simulations to follow, we first discuss effects of

unit selectivity and stimulus contrast on weight assign-
ment in the model, making use of a pool of 100 units. We
then consider, for the sake of clarity and simplicity, a
situation where the pool of combined elements consists of
only 12 uncorrelated units. One of these units is optimally
tuned to the signal, while the tuning of the other units
varies randomly from completely insensitive to highly
sensitive. This somewhat artificial but illustrative situation
enables an explicit comparison between the performance of
an “optimal” single unit and the performance of a network
and thus allows an assessment of pooling effects. We show
how this simple version of the model produces a pedestal
effect based on informational pooling across spatial frequen-
cies and is also able to simulate successfully the findings of
Henning andWichmann (2007). We further consider grating
detection (no pedestal) in noise and find that the model
correctly predicts how detection performance changes in
spectrally flat and filtered noise. Finally, having estimated
the likely number of contributing units, we demonstrate

that a more realistic pool consisting of 250 units with
correlated responses and tuned to a broad range of spatial
frequencies robustly produces similar results.

Methods

Model equations

The contrast response functions of the units in the
network simulations (Equation 1 below) are those of the
Invariant Response Descriptive Model described in
Albrecht et al. (2002), expanded to include an explicit
selectivity parameter, Sel, which varies between 0 (i.e.,
the unit is not sensitive to the signal) and 1 (i.e., the peak
sensitivity of the unit’s spatial-weighting function corre-
sponds to the spatial frequency of the signal). The
selectivity parameter is needed for the units’ response
functions to have the behavior demonstrated by cortical
neurons (Albrecht et al., 2002; Geisler & Albrecht, 1997).
The response functions, based on the Naka–Rushton
equation, provide a good fit to the contrast response func-
tions of striate cortex neurons to preferred (Sel = 1) and
non-preferred (Sel G 1) stimuli (Albrecht et al., 2002;
Geisler & Albrecht, 1997). Equation 1 shows the mean
response of a unit, Ru

��
, as a function of stimulus contrast c,

expressed as a fraction of the unit’s maximal firing rate:

Ru
��

cð Þ ¼ r0 þ Sel rmax

cn

cn50 þ cn

� �
; ð1Þ

where r0 is a spontaneous discharge rate. In the simu-
lations, r0 is drawn from an exponential distribution with a
mean value of 1.5% of the maximal firing rate (Olshausen
& Field, 2005) [r0 È Exp(1.5)]; rmax is the maximum
firing rate, drawn from a normal distribution with mean
81.8 and standard deviation 12.2 [rmax È N(81.8, 12.2)]; n
is the response exponent [n È N(2.4, 0.18)]; c50 is the
semi-saturation contrast [c50 È N(0.387, 0.0351)]. The
expressions in square brackets following the definition of
the terms in equations, give, where appropriate, the form
and parameters of the distribution from which values for
the terms were randomly selected. The parameter distri-
butions are based on neurophysiologically determined
estimates (Albrecht et al., 2002). However, the exact
parameter settings are not critical to any of the claims
made in the paper. Nevertheless, we shall see that these
distributions produce a remarkably good approximation of
psychophysical data.
In the model, as in the measured behavior of cortical

cells, the variance of a unit’s response is proportional to
its mean value and is given by Equation 2:

VarðRuðcÞÞ ¼ 1:5ðRu
�� ðcÞÞ; ð2Þ
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where Var(Ru(c)) is the variance of a unit’s response as a
function of stimulus contrast. The scaling value of 1.5 is
based on estimates provided in several papers on cortical
cell response reliability (Albrecht et al., 2002; Geisler &
Albrecht, 1997; Vogels et al., 1989). The particular value
of the proportionality constant is not critical, but the fact
that variance is proportional to mean activity is crucial.
For the network simulations in this paper, the weight of

each unit, 5u(c), is fully determined by its mean response,
normalized, for convenience, by the sum of all the
contributing weights and given by Equation 3:

5u cð Þ ¼ Ru
�� ðcÞXN

i¼1

Ri
�� ðcÞ

; ð3Þ

where 5u(c) is the weight of unit u at stimulus contrast c
in a network of N units. In order to make the simulations
tractable, the trial-to-trial variation in the weights was
ignored; we used the mean responses in calculating the
weights. This is a simplification. In a real nervous system,
the means would not, of course, be available from a single
unit and weights would necessarily be based on responses
alone. In Appendix A, we demonstrate that this simplifica-
tion is immaterial with respect to the conclusions we draw.
The mean pooled response at any given contrast,

Rpooled
�����
(c), is:

Rpooled
����� ðcÞ ¼

XN
u¼1

5uðcÞRu
�� ðcÞ: ð4Þ

The more responsive and hence, because of the propor-
tionality rule, the more reliable units thus attract more
weight. We do not wish to suggest that the decoding is
necessarily as simple as our heuristic rule. But its simplicity
is appealing and for most situations, it resembles an optimal
combination rule without the computational burden of
determining the covariance matrix for the units in the
network or, indeed, knowing anything about the precision
of any unitVbecause the variance is proportional to the
responsiveness, only the strength of the response to any
given stimulus matters.
Finally, to compute the variance of the pooled

responses, we made use of the pooling formula (Shadlen
& Newsome, 1998):

Var Rpooled cð Þ� � ¼XN
u¼1

52
uðcÞVar RuðcÞð Þ þ

XN
u¼1

XN
vmu

ruv

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52
uðcÞVar RuðcÞð Þ52

vðcÞVar RvðcÞð Þ
q

;

ð5Þ

where ruv is the correlation coefficient between the uth
and the vth unit. Correlation among units is, of course,
notoriously difficult to determine. Nevertheless, it is an
importantVindeed a crucialVfactor in somemodels of MT
pooling (Shadlen, Britten, Newsome, & Movshon, 1996).
Contrast-discrimination performance of the network,

expressed as dV, is fully determined by the mean and
variances of the pooled responses to the pedestal and to
the pedestal-plus-signal (Green & Swets, 1966) and given
by Equation 6:

dpooled
V cped; cpedþsig

� �¼ Rpooled
����� ðcpedþsigÞj Rpooled

����� ðcpedÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðRpooledðcpedþsigÞÞ þ VarðRpooledðcpedÞÞ

p :

ð6Þ

Cortical neurons and visual noise

Early neurophysiological work demonstrated some
heterogeneity among cortical neurons in cat striate cortex
in response to noise. Simple cells have been reported to be
unresponsive to a broadband noise stimulus while their
response to an otherwise optimal stimulus is reduced
when this stimulus is embedded in noise (Hammond &
MacKay, 1977; Maffei, Morrone, Pirchio, & Sandini,
1979). Other neurons (mainly complex cells) have been
reported to respond to (some kinds of) broadband
noise, although their response to an otherwise optimal
stimulus is also reduced when this stimulus is
embedded in noise (Hammond & MacKay, 1977;
Maffei et al., 1979). For both kinds of neurons, the main
effect of spectrally flat noise is thus that single units’
contrast–response functions shift toward higher contrasts
and lower response rates.
More recent work by Carandini et al. (1997) demon-

strated that the effects of binary noise on the contrast–
response functions of simple cells in macaque primary
visual cortex are well captured by the normalization model
mentioned briefly in the Introduction. In their paper,
Carandini et al. make the simplifying assumption that
the noise would be unable to drive the linear receptive
field of the cells, so that the sole effect of the noise would
be to provide divisive normalization. To fit their data,
Carandini et al. introduced an additional parameter !,
controlling the effectiveness of noise in driving the
normalization pool and reported that the values of !
resulting from the fits to 22 simple cells were equally
spread (on logarithmic coordinates) between 0.1 and 10,
indicating that the noise provided very strong inhibition
for some cells but only weak inhibition for others.
In this paper, we largely follow the implementation of

Carandini et al. (1997) to capture the effects of noise on
units in our model. However, we do not assume that
broadband noise is unable to drive the linear receptive
field for several reasons. First, Carandini et al. reported a
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3-fold elevation of the maintained discharge in noise. This
is unlikely to be explained by suppression and implies
activation; second, noise activation is crucial to explain
some psychophysical observationsVcontrast detection
performance improves slightly when weak noise is added
to a low-contrast signal (Goris, Zaenen, & Wagemans,
2008b); third, in the logic of the normalization model, the
crucial difference between notched noise and flat noise for
cells tuned to frequencies in the notch is that notched
noise provides only non-specific suppression, while flat
noise provides both excitatory and inhibitory activation.
The equations used to describe unit responses in

broadband and notched noise are derived from Carandini’s
implementation combined with simulations and explained
in detail in Appendix B (Equations B3 and B4). In
summary, in the model developed here, addition of broad-
band noise increases the maintained discharge, modifies
the response exponent, and leads to an effective shift of
the contrast response function toward higher contrasts and
lower response rates. The strength of this shift varies
across units, as has been reported for simple cells. On the
other hand, while the addition of notched noise produces
similar effects, its effects are modified by the presence of
the notch and by units’ selectivity to frequencies both
within and outside the notch. For units tuned to the fre-
quencies outside the notch, notched noise is effectively
equivalent to broadband noise, but for units tuned to
frequencies in the notch, notched noise produces strong
non-specific suppression. This is illustrated in Figure 3.
Figure 3a shows how the mean response of one particular
unitVtuned to the signal frequency in the center of the
notchVvaries with signal contrast when different levels of
notched noise are added to the signal. As the noise power
increases (the more reddish curves), the inhibitory
response increases, because the normalization pool is
broadly tuned, and becomes more variable, which sup-
presses and effectively linearizes the contrast response

function. This is shown in Figure 3b where the response
functions shown in panel are replotted, normalized by the
response at maximal signal contrast. Note that the
response acceleration decreases with noise power. How-
ever, in the presence of notched noise, it is not this unit, as
we shall see, that attracts the greatest weighting in the
pool.
The characteristics of the noise effects are based on a

relatively small number of physiological observations
combined with theory-based simulations, thus it is at best
an approximation. Nevertheless, the simulated networks
robustly predict plausible contrast-discrimination data, as
we shall see.

Results

In the simulations described below, we first discuss the
effects of unit selectivity and stimulus contrast on weight
assignment in the model, making use of a pool of 100 units.
We then consider a situation where the pool consists of
12 uncorrelated units. We show how this simple version
of the model produces a pedestal effect based on weighted
pooling across spatial frequencies and successfully simu-
lates the findings of Henning and Wichmann (2007).
Finally, we demonstrate that a more realistic version of
the model produces similar results.

Weight assignment: Effects of unit selectivity
and stimulus contrast

In our network, each element’s contribution depends
simply on the magnitude of its response. Since the
reliability of the unit is proportional to the mean response,

Figure 3. The effects of notched noise. (a) The contrast response function for one particular unitVtuned to the center frequency of the
notch, with r0 = 0, n = 2.6, and c50 = 0.3Vas a function of signal contrast with different levels of notched noise added to the signal. As the
noise power increases (the lower, more reddish curves), the inhibitory response increases and becomes more variable, which
suppresses and effectively linearizes the contrast response function. (b) The same response functions as in a, normalized by their
respective response at maximal signal contrast.
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such a weighting provides a crude approximation to
optimal weighting. Figure 4a illustrates response rate as
a function of contrast for a family of cortical neurons
responding, in the absence of added external noise, to a
narrow-band stimulus at their preferred orientation
(Albrecht et al., 2002; Geisler & Albrecht, 1997).
In Figure 4a, the units with high saturation levels are

those best tuned to the spatial frequency of the stimulus
while progressively lower saturation levels represent units
that respond less and less to the stimulus because their
optimal stimuli have spatial frequencies that are further
and further away from the spatial frequency of the
stimulus. The close relation between saturation level and
selectivity for spatial frequency allows us to use the
relative saturation level of each unit as an indication of its
selectivity for the sinusoidal signal and pedestal (see
Equation 1). The saturation level of the 100 units in this
simulation ranged from 100% to 1% of the maximum
saturation levelVa range that would represent a range of
peak sensitivities of roughly 5 octaves, uniformly sampled
on a logarithmic axis, around the frequency of the signal
(we assume geometrically symmetrical tuning functions

with a bandwidth of approximately 1.5 octaves). These
selectivities were mainly chosen for convenience. (Note
that in behavioral studies, the contrast of narrowband
stimuli rarely exceeds 50% and even this may be an order
of magnitude greater than the contrasts that typically
occur naturally (Frazor & Geisler, 2006). Thus, the
behaviorally relevant region of Figure 4a lies below about
30% contrast.)
The behavior shown in Figure 4b captures the central

features of contrast discrimination that appear in experi-
ments without added external noise. Figure 4b illustrates
the network’s dipper-shaped threshold-versus-contrast
function at 75% correct in a 2AFC task; the “dipper”
shape constitutes the pedestal effect. Almost no unit in
the simulation shows the pedestal effect by itself–rather
the effect emerges from the pooled responses as will be
discussed below.
Figures 4c and 4d both show the fraction of the total

weight assigned to different units as a function of their
selectivity. Results for three different pedestal contrasts–
indicated by the colored arrows in Figure 4b–are shown:
zero contrast in black, a just-visible pedestal contrast in

Figure 4. Illustration of the effects of stimulus contrast on the distribution of weights. In this simulation, the network consisted of 100 units,
with stimulus selectivity, indicated by the relative saturation levels, varying from 1% to 100% in steps of 1%. (a) The contrast response
functions to some narrow-band stimulus of six of the network units with similar orientation tuning but different spatial frequency tuning.
(b) The dipper-shaped 75% correct threshold-versus-contrast function of the network. (c) Weight as a function of stimulus selectivity at
the three different pedestal contrasts indicated by the arrows in panel b. (d) Same as panel c but averaged over 100 simulations.
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blue, and a highly visible pedestal contrast in red. Figure 4c
shows the distribution of weights as a function of unit
selectivity for one simulation; Figure 4d shows the weights
averaged over 100 simulations. For each of these simu-
lations, the set of cell selectivities was held constant, but all
other parameters of our network were randomly selected
from the distributions described in the Methods section.
When a blank stimulusVa uniform field of the same

mean luminance as the sinusoidal gratingVis presented
(black curves), the units by definition respond at their
(usually non-zero) spontaneous discharge rate. Conse-
quently, the jagged black line reflects the probability
distribution of spontaneous activity across cells. The
distribution was chosen to be exponential (Olshausen &
Field, 2005) with an average of 1.5% of maximal firing
rate (see Methods). This cell characteristicVbase rate
activityVis independent of stimulus selectivity and the
distribution of weights is uniform with respect to selectivity
(as can be seen in Figure 4d, where the black line is the
average weight in 100 simulations and is approximately
horizontal). As stimulus contrast increases from zero, the
relative magnitude of a unit’s response begins to reflect
not only its spontaneous rate but also a stimulus-driven
partVthe latter determined by the unit’s selectivity (see
Equation 1). Hence, at non-zero stimulus contrasts, higher
weights are attracted by the better tuned units (i.e., more
responsive units) in a fashion that is roughly linearly
related to selectivity (the blue and red lines in Figures 4c
and 4d). The higher weighting occurs, of course, because
the weighting of a unit increases as its response increases.
However, both the slope and the variability of this linear
relation depend on stimulus contrast.
At low, barely visible pedestal contrasts (blue curves),

spontaneous activity contributes a high proportion of the
total cell response. As a consequence of the exponentially
distributed spontaneous discharge levels, a few units with
high base-rate activity will attract much of the weight
(the blue curve in Figure 4c). Note that such units would
be called “irrelevant” in the context of uncertainty models
(Pelli, 1985). As pedestal contrast increases, more and
more cells are driven by the stimulus and spontaneous
activity gradually looses its influence on network activity.
Consequently, the variability across the distribution of
weights decreases with increasing contrast (the red curve
in Figure 4c) and the slope of the distribution of weights
increases (the red curve in Figure 4d).
Thus, with contrast detection and discrimination based

on the combined response of many elements instead of a
single element, the class of units contributing most to the
decision statistic and distinguished by their stimulus
selectivity or spatial-frequency tuning varies a lot. With
weighting determined by responsiveness and especially at
low stimulus contrasts, units tuned to spatial frequencies
and orientations remote from the signal are often weighted
heavily.
We now investigate in more detail the effects of

weighted pooling on contrast detection and discrimination.

In the following simulations, we consider the simplified
situation where the pool consists of 12 uncorrelated units.
One of these units is optimally tuned to the signal (i.e.,
selectivity = 1), and the selectivity of the 11 other units, as
indexed by their saturation level, is randomly drawn from a
Gaussian distribution centered at 0.50, with a standard
deviation of 0.17 and clipped at 0 and 1. For the 4-cycle/deg
signal used in our simulations, this selectivity distribution
is not inconsistent with spatial frequency tuning properties
of cortical neurons (Geisler & Albrecht, 1997); i.e., many
neurons are somewhat sensitive to the signal, while few
are optimally tuned to the signal, or completely insensitive
to the signal.

Contrast discrimination: Effects of response
pooling

Figure 5a illustrates response rate as a function of
contrast for all 12 units in one particular pool driven, in
the absence of added external noise, by a narrow-band
stimulus at their preferred orientation. The contrast
response function of the unit that is optimally tuned to the
signal is shown in purple. In comparison to monitoring only
the most sensitive unit, pooling the responses from neurons
of different sensitivity weighted by their responsiveness,
i.e., weighted pooling across units, improves detectability
at all stimulus contrasts except in some cases where the
contrast is so low that few units are stimulus driven.
Moreover, because of the proportionality rule, the improve-
ment in sensitivity from weighted pooling relative to the
most selective single unit increases as contrast increases.
To see this consider Figure 5b, which illustrates how the

ratio of the mean pooled response to the standard
deviation of the pooled response depends on the contrast
of a narrowband stimulus. This ratio is closely related to
the detectability of the stimulus and is labeled dV(Green &
Swets, 1966). The ratio of the mean to the standard
deviation for the pooled group is indicated by the green
line, the same ratio for the most selective unit, by the
purple line. The higher this ratio, the better the system is
able to discriminate a low-contrast signal grating from a
uniform field. At the very lowest stimulus contrasts, where
the non-optimally tuned units mainly contribute noise, the
purple line lies above the green line, indicating that
performance of the most selective unit is slightly better
than that of the pooled response. From a certain stimulus
contrast on, however, the green line lies above the purple
line, indicating that the pooled response outperforms the
most selective unit. Moreover, as contrast increases, the
difference between the two functions grows as a conse-
quence of the proportionality rule and the changing
weighting profile (Figure 4d). The pooled detectability
function is thus more sharply accelerated and it has been
suggested that this particular non-linearity underlies the
pedestal effect (Nachmias, 1981; Nachmias & Sansbury,
1974; Smithson, Henning, MacLeod, & Stockman, 2009).
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Figure 5c shows the 75% correct “thresholds” for
detecting a narrowband stimulus as a function of the
contrast of the pedestal, again in the absence of noise; the
threshold for the pooled group is indicated by the green
symbols, for the most selective unit, by the purple. In both
cases, the thresholds are determined by calculating the
difference between the mean response to the pedestal
alone and the mean response to the signal-plus pedestal
and dividing this difference by the square root of the sum
of their variances (see Equation 6). It is clear in Figure 5c
that the pooling of information in the network leads not
only to better performance from a certain pedestal contrast
on but also to a bigger pedestal effect. The pedestal effect
of the pooled network is based on broadband-weighted
pooling, i.e., on the use of information carried by units
tuned to frequencies other than the signal frequencyVi.e.,
a form of off-frequency looking. The finding that pooling
responses weighted by their responsiveness increases the
size of the pedestal effect, in addition, removes the
puzzling discrepancy between the mild dip observed in

single cells in striate cortex (Geisler & Albrecht, 1997)
and the deep dip observed psychophysically (Bird et al.,
2002; Nachmias & Sansbury, 1974). However, note that
pooling responses in a Bayesian optimal fashion does not
produce a strong pedestal effect (see Chirimuuta &
Tolhurst, 2005 and Figure 10b in Geisler & Albrecht,
1997).
In human vision, the strength of the pedestal effect is

known to depend on the performance level taken to define
the “threshold” (Bird et al., 2002; Goris et al., 2008a;
Henning & Wichmann, 2007; Nachmias & Sansbury,
1974; Wichmann, 1999). At low performance levels, the
maximal pedestal-induced threshold reduction is consid-
erably larger than at high performance levels. This partic-
ular property of contrast discrimination has largely been
ignored because only one performance contour is usually
determined (Foley, 1994; Legge & Foley, 1980) but has
already proven useful in model selection (Goris et al.,
2008a; Wichmann, 1999). In Figure 5d, discrimination
thresholds for the pooled network of weighted unit

Figure 5. Illustration of the effects of pooling on contrast discrimination. (a) The response functions of the 12 units in one particular
pool to signals of increasing contrast. The contrast response function of the unit that is optimally tuned to the signal is shown in purple.
(b) Detectability, dV, expressed as the ratio of the mean response to the standard deviation, as a function of contrast for the most sensitive
unit (purple line) and the pooled decision statistic (green line) on semi-logarithmic coordinates. (c) Contrast-discrimination thresholds at
75% correct as a function of pedestal contrast on double logarithmic coordinates for the most sensitive unit (purple) and the pooled
decision statistic (green). (d) Contrast-discrimination thresholds as a function of pedestal contrast on double logarithmic coordinates for
the pooled decision statistic at three performance levels in 2AFC (black: 60%, gray: 75%, and white: 90%).
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activation are plotted at 60% (black), 75% (gray), and
90% (white) correct response levels. The network clearly
gives rise to the observed performance-level-dependent
pedestal effect: Consistent with human data, the dip of the
threshold-versus-pedestal contrast function is deeper at
lower performance levels.
Another salient feature of contrast-discrimination stud-

ies is that, from a certain pedestal contrast level on,
discrimination thresholds as a function of contrast
plotted on double logarithmic coordinates rise in a nearly
linear fashion (e.g., Bird et al., 2002). This, of course, is
Weber’s law. It can be seen in Figure 5c that the rise in
discrimination thresholds of the pooled population
response is also approximately linear on double logarith-
mic coordinates. This is a consequence of the roughly
constant ratio of the variance and mean of the pooled
response in the high-contrast region. Thus, because the
variance of the pooled response is effectively proportional
to the mean pooled response at suprathreshold contrasts,
the ratio of the just-noticeable contrast increment and
pedestal contrast is approximately constant, consistent
with Weber’s Law and the linear slope on double
logarithmic coordinates.
The slope of this part of the dipper curve on the

coordinates of Figure 5c is steeper than psychophysical
estimates that are typically around or slightly below one
(Bird et al., 2002; Wichmann, 1999). We speculate that
two neurophysiological observations that are not included
in our model may account for this deviation. First, if one
or more of the network units saturated more slowly at
higher contrasts, responding more linearly over the entire
contrast range, the slope would be lower. Indeed, there is a
great deal of heterogeneity among cortical cells and about
5% demonstrate a nearly linear relation between contrast
and response magnitude (Albrecht et al., 2002). The effect
of reaching saturation more slowly, i.e., extended linearity
may be twofold: because their responses continue to
increase after other units saturate, the more linear units
will attract an increasing proportion of the weighting,
provided, of course, that such units ultimately exhibit high
saturation levels. Thus, although they may constitute a
small proportion of the population, their contribution to
the pool will be disproportionately large at high contrasts.
Consequently, because of the large contribution of the
linear units at high contrasts, the pool will be effectively
linearized. The importance of linearization at higher levels
of the visual system is a major issue (Eliasmith &
Anderson, 2003).
Second, extracellular recordings in cat V1 suggest that

firing-rate variance saturates at high firing rates and thus
deviates from the proportionality rule used here (Carandini,
2004). Effectively, the signal-to-noise ratio of cortical cell
responses may thus be better at high contrasts, which would
lower the slope of the rising part of the dipper function.
In summary, pooling the responses of a limited number

of units that resemble the contrast response functions and
statistical properties found in primary visual cortex by

simple weighted summation produces contrast discrimina-
tion predictions that resemble several features of human
vision. Further, the pedestal effect in this model is based on
the use of information carried by units tuned to frequencies
other than the signal frequency. This is, of course, a form of
off-frequency looking.
We now specifically investigate whether this simple

implementation of off-frequency looking is able to capture
the contrast discrimination in noise results reported by
Henning and Wichmann (2007).

Contrast discrimination in noise: Effects
of response pooling

Thus far, we have considered contrast processing in the
absence of added external noise. Addition of spectrally
flat noise to a narrow-band stimulus increases cell activity
at low response rates but inhibits cell activity at high
response rates (Carandini et al., 1997; see Appendix B).
Presumably, the activation is caused by rectification and
the inhibition by broadband normalization. These effects
are thus in line with the normalization model andVas
explained in detail in Appendix BVcan be captured by
extending the descriptive equation of the contrast response
function (Equation B3). Finally, because noise elicits
variable excitatory and inhibitory activation, the acceler-
ation of the contrast response function is reduced or
softened by noise (Miller & Troyer, 2002).
To the best of our knowledge, no physiological data on

effects of notched noise are available. We thus base our
predictions on the logic of the normalization model. For a
unit tuned to the frequency in the center of the 1.5-octave
wide notch, notched noise can only provide non-specific
suppression. This is because the noise will have a negli-
gible effect on spatial-frequency tuned excitatory frequen-
cies of the unit. Given that broadband noise increases cell
activity at low response rates, the inhibitory effect of the
notched noise is likely to be stronger than the net inhibition
provided by broadband noise. In our simulations, notched
noise is assumed to cause twice as much inhibition as white
noise for a unit tuned to the signal frequency and centred
in the notch (see Equation B4 in Appendix B). For a unit
tuned to a frequency outside the notch, however, the
effects of the noise are assumed to be approximately
similar to effects of broadband noise. As is the case for
broadband noise, the acceleration of the contrast response
function is softened by notched noise. Importantly, simu-
lations with the normalization model showed that stronger
noise suppression produces a more linear contrast response
function (Figure 3). Thus, the linearizing effects of
notched noise are most pronounced for units tuned to the
signal frequency (i.e., Sel = 1) and decrease with
selectivity.
In summary, the effects of broadband noise and notched

noise on the contrast response function were derived from
model simulations and described by Equations B3 and B4.
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Our model has only one free parameter, i.e., the effective
noise power. At a noise power which produces on average
a four-fold elevation of the maintained discharge, we find
that the model robustly produces contrast-discrimination
data taken in noise, that are consistent with the observa-
tions of Henning and Wichmann (2007): the pedestal
effect is slightly diminished in broadband noise but
disappears almost completely in notched noise. (This
noise power is not unreasonably large: Carandini et al.
(1997)Vmaking use of binary noise at several noise
powersVreport an average three-fold elevation in their
experiments; Henning and Wichmann (2007) used the
maximum noise-power density (1D noise) their display
system allowed them to generate.)
Figure 6 illustrates the 12 noiseless contrast response

functions for one particular pool with no external noise
(Figure 6a), as well as the changes these functions
undergo in spectrally flat (Figure 6b) and notched noise
(Figure 6c). The contrast-discrimination functions for
each of these conditions are shown in Figure 6d. The
contrast-discrimination threshold functions shown in
Figure 6d closely mimic the results of Henning and
Wichmann (2007): the pedestal effect in the absence of
noise (green) is slightly diminished and shifted on these

coordinates to higher contrasts in broadband noise (blue),
but disappears almost completely in notched noise (red).
Further, at higher pedestal contrast levels, discrimination
thresholds of all noise conditions almost coincide, consis-
tent with human data (Henning & Wichmann, 2007). We
thus conclude that our implementation of noise effects and
broadband-weighted response pooling is able to produce
plausible results for contrast discrimination in noise.

Contrast detection: Effects of response
pooling

Pooling the responses of many units with wide hetero-
geneity in spatial-frequency tuning produces a detectability
function that is largely shifted to lower contrasts and more
sharply accelerated relative to the detectability function
for a single unit (see Figure 5b). The model presented in
this paper thus shows that response pooling is a sensible
strategy for contrast detection as well. Consequently,
experimental manipulations that modify the contrast
response functions of cortical cells will affect detection
performance. Although not discussed by Henning and
Wichmann (2007), the detection data they also gathered in

Figure 6. Contrast discrimination in noise. (a) The contrast response functions of the 12 units in one particular pool to the signal with no
added external noise. (b) The contrast response functions for the signal embedded in broadband external noise. (c) The contrast response
functions for the signal in the presence of notched noise. (d) Predicted contrast-discrimination thresholds for this pool as a function of
pedestal contrast with no external noise (green symbols), in broadband noise (blue symbols), and in notched noise (red symbols).
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their series of contrast-discrimination experiments provide
a test of this hypothesis.
In their experiments, detection of a 4.0-cycle/deg

sinusoidal grating was measured without noise and with
notched noise addedVthe notch being 1.5 octaves wide
and geometrically centered on the signal frequency.
Figure 7a shows how signal detectability increases as a
function of contrast without noise (green), in broadband
noise (blue) and in notched noise (red) according to the

model. It will be noted that these functions are closely
related to the strength of the pedestal effect, i.e., more
rapidly accelerating detectability functions correspond to
a stronger pedestal effect. Figure 7b plots the predicted
psychometric functions, i.e., percentage correct in a 2AFC
task as a function of signal contrast on semi-logarithmic
coordinates, derived from the detectability functions shown
in Figure 7a. First consider detection without noise and in
notched noise.

Figure 7. Illustration of the effect of channel pooling on contrast detection. (a) Signal detectability as a function of contrast for the pooled
decision statistic on semi-logarithmic coordinates. Performance without noise is shown in green, in notched noise in red, and in
broadband noise in blue. (b) The psychometric functions relating percentage correct in a 2AFC detection task to signal contrast
(corresponding to the detectability functions shown in panel a). (c) Detection performance in a 2AFC task as a function of signal contrast
for observer GBH. Green symbols refer to the no-noise condition, red symbols to the notched-noise condition, and blue symbols to the
broadband-noise condition. (d) Detection performance for observer NAL. (e) Detection performance for observer TCC. (f) Detection
performance as a function of (rescaled) signal contrast for all observers in the no-noise (green) and notched-noise (red) conditions.
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According to the model, detection performance without
noise should be better at most stimulus contrasts (see
Figure 7b). Furthermore, the psychometric function
relating performance (% correct) to signal contrast should
be steeper without notched noise. Figures 7c–7e shows
the percentage of correct responses as a function of signal
contrast on semi-logarithmic coordinates obtained sepa-
rately from three observers with no noise (green) and with
(red) notched noise (Henning & Wichmann, 2007). For
observer GBH, detection data with broadband noise (blue)
are plotted as well. Fitted psychometric functions are also
shown. As can be seen, the addition of notched noise not
only hurts detection performance but also produces a more
shallow psychometric function. Figure 7f shows the
psychometric functions fitted to the combined data of all
three observers, where the different symbols refer to
different observers. (For each of the relevant conditions,
the data for each observer have been scaled to equate the
observers’ 75% correct level within a given condition,
thus increasing the statistical power of the test designed to
compare the slopes of the psychometric functions.) It is
clear that the data are consistent with the hypotheses
formulated above: The signal contrast necessary to achieve
75% correct is lower in the no-noise condition (for each
observer, p G 10j6), and analysis of the "-parameterVthe
parameter controlling the steepness of the cumulative
Weibull function fitted to the dataVreveals that the
psychometric function is also steeper than for the notched
noise condition (for each observer, p G 0.05, for the
combined data, p G 10j6; Wichmann & Hill, 2001). These
data are thus consistent with the notion that even detection
of a sinusoidal grating may be based on pooled responses
rather than on the most responsive channel.
For the model, the detection psychometric function in

broadband noise is shallower than without noise but steeper
than in notched noise if the noise-power density in the pass
bands is kept constant. The 75% correct threshold, on the
other hand, is expected to be higher in white noise than in
both other conditions. Henning and Wichmann (2007) also
measured detection in white noise, but noise power in the
pass bands was only kept constant for observer GBH.
Nevertheless, it is interesting to note that his data suggest
that the detection psychometric function in white noise is
indeed shallower than without noise (p G 0.01) but steeper
than in notched noise (p G 0.05). Furthermore, as can be
seen in Figure 7c, the signal contrast necessary to achieve
75% correct is higher in the white-noise condition than in
both the no-noise condition (p G 10j6) and the notched-
noise condition (p G 10j6). These data are thus consistent
with the notion that noise may modify the neurons’ contrast
response functions, without, however, altering the pooling
rules.
In summary, the population code model that success-

fully simulates contrast discrimination in noise was
shown to predict effects of broadband-weighted pooling
in detection as well. These predictions were tested and
confirmed, thus suggesting that even the detection of a

low-contrast sinusoidal grating may be based on the
responses of many elements with a wide heterogeneity in
spatial frequency tuning.

Larger pools with random spatial frequency
tuning and correlated noise

A final consideration is the issue whether this model is
able to produce realistic results in a less artificial situation.
In the following simulation, we therefore consider a pool
consisting of 250 correlated units tuned to a broad range
of spatial frequencies.
In the type of network discussed in this paper, where

the main noise source is signal-dependent, allowing more
units to contribute to the decision statistic leads to better
detection performance and a stronger pedestal effect. At
first sight, larger pools may thus be expected to produce
stronger pedestal effects. However, in this regard, it is
important to note that single cell recordings have demon-
strated that the responses of different cortical neurons
in discrimination tasks are typically weakly correlated
(Golledge, Panzeri, Zheng, Pola, & Scannell, 2003;
Montani, Kohn, Smith, & Schultz, 2007; Panzeri, Golledge,
Zheng, Tovée, & Young, 2001; Shadlen et al., 1996;
Zohary, Shadlen, & Newsome, 1994). It is thus likely that
channel responses are correlated to some extent. Indeed, at
the psychophysical level, experimental evidence suggests
that spatial-frequency channels may share some of their
internal noise in contrast discrimination (Henning, Bird, &
Wichmann, 2002).
Correlated noise has two fundamentally different effects

(Averbeck, Latham, & Pouget, 2006): First, if unit activity
is pooled according to a weighted average rule and, as
proposed here, all weights are positive, correlated noise
will substantially decrease the encoding capacity of the
pool. Further, when the responses of units are correlated,
pooling improvement with increasing numbers of units
contributing to the pool approaches a limit once the num-
ber of units exceeds some critical number (Zohary et al.,
1994). Second, correlated units might influence the com-
putational decoding strategies appropriate for networks
of neurons (Abbott & Dayan, 1999; Chen, Geisler, &
Seidemann, 2006). If much additional information can be
gained by taking into account the fact that neural noise is
correlated, the decoding strategies used in the brain may be
affected, i.e., it may be appropriate to introduce a whitening
stage. For primary visual cortex (Golledge et al., 2003;
Panzeri et al., 2001), correlations are estimated to be on the
order of 0.1 to 0.15, but, Golledge et al. (2003), making use
of information theory techniques to quantify the role of
such small correlations, argue they would contribute less
than 10% extra Shannon information in encoding visual
information and it has been argued that such small
correlations are unlikely to be taken into account in the
decoding computations (Averbeck et al., 2006). Conse-
quently, we did not apply whitening for our network.
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Figure 8a illustrates the effects of correlated noise in our
network. Detectability for a low-contrast grating (no
pedestal) is plotted in Figure 8a as a function of the
number of pooled units. Detectability is measured as the
ratio of the mean response to its standard deviation,
expressed as dV. Exactly one unit in the pool was optimally
tuned to the signal. The selectivities of all other units were
again randomly chosen from a Gaussian distribution

centered at 0.50 with a standard deviation of 0.17 and
clipped at 0 and 1. The average inter-unit correlation is
coded by the color indicated by the color bar on the right
of the figure. If the noise is uncorrelated [the highest (red)
curve], addition of more units progressively improves
detectability and, in the limit, would yield an errorless
observer. On the other hand, weakly correlated noise
(the other curves) shows that the addition of more

Figure 8. Contrast discrimination in larger pools with random spatial-frequency tuning and correlated noise. (a) The effect of correlated
noise on network performance. Detectability of a low contrast sinusoidal grating is plotted as a function of pool size; color indicates the
mean inter-unit correlation ranging from 0 (the topmost curve in red) to 0.15 (the bottom curve in blue). The standard deviation of this
correlation in the simulations was chosen to be one tenth of the average correlation. Each estimate is based on 1,000 pools. (b) Spatial
frequency tuning functions for 15 units of one particular pool of 250 units (for clarity, tuning functions of the other 235 units have been
omitted). The dotted black lines indicate the boundaries of the geometrically uniform distribution from which the unit peak sensitivities
were randomly sampled. (c) Simulated contrast-discrimination thresholds as a function of pedestal contrast with no external noise (green
symbols), in broadband noise (blue symbols), and in notched noise (red symbols) for one particular pool of 250 units. (d) 75% correct
threshold elevation ratios for the three observers that participated in the Henning and Wichmann (2007) experiments are shown for all
noise conditions, indicated by the colors used in panel c. Error bars show the bootstrap-based, non-parameteric estimate of the 68%
confidence intervals. Box plots summarize the same factors for 100 pools of 250 units. In all these box plots, the central horizontal line
indicates the second quartile (i.e., the median threshold elevation ratio across pools); the other horizontal lines, where visible, indicate the
first and third quartile. Whiskers indicate one and a half times the interquartile range. There were no outliers.
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units has very little effect on detectability once a certain
critical number of units is reached. As the average inter-
unit correlation increases (downward or more blue in
Figure 8a), that critical number of units drops. For inter-
neuron correlations between 0.1 and 0.2 (typical estimates
from single cell recordings), the improvement with
increasing numbers approaches its asymptotic level
between 50 and 100 units (Zohary et al., 1994). Pool size
is thus expected to be rather limited.
In the following simulation, we consider pools of

250 unitsVthus well above the critical numberVwith an
average inter-neuron correlation of 0.15 (the standard
deviation of this correlation equals 0.05). We further
postulate a spatial-frequency tuning function for each unit.
To approximate tuning functions of cortical neurons (see
e.g., Geisler & Albrecht, 1997), we opted to characterize
spatial-frequency sensitivity with log-Gaussian-shaped
tuning functions. Peak-sensitivity was randomly sampled

from an exponential distributionVand thus uniformly
distributed on logarithmic coordinatesVranging between
1 and 33 cycles/deg. The average unit bandwidth equalled
1.5 octaves at half height, with a standard deviation of
0.2 octaves. Figure 8b illustrates the resulting tuning
functions for 15 units from a pool (tuning functions for
the other 235 units of the pool have been omitted, for the
sake of clarity). The pools in this simulation are thus tuned
to a broad range of spatial frequencies. Consequently, only
few neurons are optimally sensitive for the 4-cycle/deg
signal, while many are either somewhat sensitive or
completely insensitive to the signal.
To test whether our model is able to produce realistic

results with a broadly tuned pool consisting of units with
correlated noise, 100 pools of 250 units were generated.
The spatial-frequency tuning functions, contrast–response
functions, and inter-unit correlations of these units were
determined by randomly selecting parameter values from

Figure 9. The effect of signal contrast and external noise on the weighting profile. (a–c) The distribution of weight at 0% signal contrast as
a function of peak sensitivity for one particular pool of 250 units. Signal frequency is indicated by the arrow. (a) The weighting profile with
no external noise added. (b) The weighting profile with broadband external noise added to the signal. (c) The weighting profile with
notched noise added to the signal. (d–f) The distribution of weight at a signal contrast corresponding to the bottom of the dipper (i.e.,
approximately 15%) for the same noise conditions.
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the appropriate distributions. The effects of noise were
approximated as explained in the Contrast discrimination
in noise: Effects of response pooling section; the effective
noise power (i.e., the only free parameter in the model)
was identical to the noise power used in the simulation
shown in Figure 6. Contrast-discrimination thresholds in
noise are shown for one of these pools in Figure 8c. These
simulated results are very similar to the findings of
Henning and Wichmann (2007). This can be seen in
Figure 8d where the threshold elevationVexpressing the
strength of the pedestal effectVis plotted for all observers
in the three noise conditions. Threshold elevation is the
ratio of the 75% correct detection threshold (i.e., no
pedestal) to the lowest contrast-discrimination threshold
(bottom of the dipper) is plotted. Box plots summarize the
same ratios in the same noise conditions for the
100 simulated pools. It is clear that our model
produces contrast-discrimination data that closely mimic
the psychophysical data. It can further be derived from this
plot that the model behaves very robustly for pools of
250 units, as all box plots are remarkably small, indicating
that the different pools produced very similar threshold
elevations. We thus conclude that our model robustly
produces plausible results for large pools with correlated
noise and random spatial frequency tuning.
As explained in the section on weight assignment,

response-based weighting produces a dynamical weighting
profile, the exact shape of which depends on aspects
such as signal contrast, unit selectivity, and other factors
that affect units’ responsiveness. Noise and the spectral
characteristics of noise are such factors. It is thus interest-
ing to “open” the model and to compare the weighting
profiles in the different noise conditions. Figure 9 shows
the distribution of weights as a function of the randomly
sampled peak sensitivities for one particular pool of 250
in the absence of a signal (panels a–c) and at a contrast
where the signal is just detectable (i.e., the signal contrast
corresponds to the bottom of the dipper, panels d–f).
In the absence of a signal and external noise (Figure 9a),

the weighting profile reflects nothing but the units’
maintained discharge. With broadband noise added, all
units respond to the noise in a similar fashion and thus
produce a more regular, uniform weighting profile
(Figure 9b). With notched noise added, response-based
pooling produces a dip in the weighting profile (Figure 9c)
because the responses of units tuned to frequencies within
the notch are most strongly suppressed by the noise.
Increasing the signal contrast to detection threshold
strongly affects the weighting profiles (Figures 9d–9f). In
the absence of external noise (Figure 9d), the weighting
profile now peaks at the signal frequency (4 cycles/deg)
and is approximately symmetrical on logarithmic coordi-
nates. Units with peak-sensitivities more than one octave
away from the signal frequency are usually not very
selective for the signal and thus attract almost no weight.
With broadband noise added (Figure 9e), the peak of the
weighting profile is attenuated, while the tails are elevated

because units that are not tuned to the signal frequency are
responding to the noise and thus attract some of the
weight. With notched noise added (Figure 9f), response-
based pooling produces a rippled weighting profile. The
responses of units tuned to frequencies within the notch
are most strongly suppressed by the noise, while units
tuned to frequencies that are approximately one octave
away from the signal frequency now attract most of the
weight. In this regard, notched noise produces more rather
than less off-frequency looking in our modelVthe biggest
weights are off the signal frequency but within the notch.

Discussion

Current models of spatial vision cannot easily explain
why the pedestal effect persists in broadband noise but
disappears in notched noise. Indeed, predictions of the
standard version of the psychophysical divisive inhibition
model (Foley’s model 3) are not in line with these findings.
Further, there is a discrepancy between the deep dip
attributed to single channels by these models and the mild
dip observed in single cells of the striate cortex. If one
assumes that notched noise prevents or reduces the use
of information carried by channels tuned to frequencies
other than the signal frequency, these findings suggest
that the pedestal effect stems from off-frequency looking
(Henning & Wichmann, 2007). However, the assumption
that notched noise prevents off-frequency looking might
be wrong.
At single cell level, the normalization model is consistent

with many different observations on cortical cell behavior.
Although the available data are limited, this model has also
been shown to capture the effects of broadband noise
reasonably well. Our implementation of noise effects is
fully based on the logic of the normalization model. It is
important to note that for notched noise, this implemen-
tation does not result in reduced information pooling
across units. To the contrary, notched noise modifies
units’ contrast response functions, without preventing off-
frequency looking. In this case, the dipper disappears in
notched noise for two main reasons: First, because the
notched noise, through the inhibitory effect of noise outside
the notch on units tuned to frequencies within the notch,
linearizes those units’ response. Second, because notched
noise prevents the (large) improvement in the signal-to-
noise ratio of the responses of the units tuned to the signal
frequency that occurs without noise and to a lesser degree
in broadband noise. (Stated differently, in notched noise
the pedestal does not lead to a stronger contribution of
the “relevant” channels to the decision statistic.)
Here, we have shown that in a network consisting of

units whose contrast response functions resemble those of
cortical cells, weighted summationVwith weights based
simply on the magnitude of the responseVproduces
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contrast-discrimination data that resemble many aspects of
psychophysical observations. Similar to earlier neurophy-
siologically based models of vision, the model includes a
spontaneous firing rate (a stimulus-independent base firing
rate) and mimics the physiologically observed proportion-
ality between mean and variance of the firing rate with
signal-dependent noise. The pedestal effect in the model,
however, arises because of information combination across
units.
The model predicts not only the standard dipper effect

but also how the dipper changes when spectrally flat and
notch-filtered noise is added. Finally, the model is
consistent with neurophysiological estimates of simple-
cell contrast–response functions and thus, irrespective of
the specific parameter settings of the model, resolves the
discrepancy between single cell contrast–response func-
tions, which display a weak or even no pedestal effect and
the strong pedestal effect observed psychophysically.
In the model, we find that the detailed statistics of the

components of the narrowband stimulus hardly matter:
performance is principally determined by the signal-to-
noise ratio of the decision statistic, which is based on
the combined output of both sensitive and relatively
insensitive units. Indeed, human contrast-discrimination
performance has been reported to be largely independent
of signal frequency (Bird et al., 2002).
Using information from non-optimally tuned cells is

probably not a unique feature of contrast discrimination.
For instance, Shadlen et al. (1996) considered the relation
between behavioral and neurophysiological (MT)
responses to visual motion and found that non-optimally
tuned cells needed to be postulated and included in the
neural pool in order to reconcile their behavioral and
neurophysiological measures.
Employing a simple response-based weighting heuristic

is a sensible strategy because under most realistic
conditions, i.e., at sufficiently high contrasts, it resembles
an “optimal” combination rule (for a maximum likelihood
combination rule for detection, see Jazayeri & Movshon,
2006). Nevertheless, one may wonder how the visual
system would manage to weight the responses of different
units differently and even adjust these weights on a trial-
to-trial basis. It may be helpful to notice that our
particular decoding rule can also be thought of as the
summed output of a neuronal layer in which the responses
of (a reasonably large number of) randomly sampled V1
cells are squared and, perhaps, normalized by the (non-
squared) responses of a similarly large random sample of
V1 cells. The normalization does not alter model predic-
tions, but the squaring is crucial to capture response-based
weighting.
In this paper, we did not discuss effects of orientation

tuning. There is, however, no reason to assume that
pooling is limited to the spatial frequency dimension.
Indeed, the selectivity parameter may be thought off as
expressing effects of either or both spatial-frequency and
orientation tuning. Consequently, our model predicts that

performing a contrast-discrimination experiment in ori-
entation-filtered noise will produce similar effects as the
notched noise effects of Henning and Wichmann (2007).

Conclusion

Recent evidence has demonstrated that the pedestal effect
in spatial vision is differently modified by spectrally flat and
notch-filtered noise. Here, we have shown that a network
consisting of units whose contrast response functions
resemble those of the cortical cells believed to underlie
human pattern vision can produce contrast-discrimination
data consistent with psychophysical observations when the
outputs of multiple units tuned to a range of spatial
frequencies are combined by simple weighted summation.
One implication of these findings is that even in processing
low-contrast sinusoidal gratings, as in detection, the visual
system may combine information across neurons tuned to
different spatial frequencies and orientations.

Appendix A

To make the simulations tractable, we simplified the
calculation of the weights by using mean responses
(Equation 3). This simplification allowed us to estimate
the variability of the pooled network response (Equation 5)
and thus network discrimination performance (Equation 6)
directly for any given combination of pedestal and signal
stimulus, without having to simulate too many trials.
However, in a real nervous system, weights would
necessarily be based on responses alone. Compared with
the simplified implementation, there is now trial-to-trial
variation in the weights. This additional source of
variation does not, however, change the important parts
of the networks’ behavior described in the paper. The
crucial observation here is that in assigning weights,
nothing need be known about the variance or indeed any
other characteristic of a unitVthe weights are determined
solely by the strength of the unit’s response.
This point is clarified by a simulation, the results of

which are shown in Figure A1. Figure A1a illustrates how
the detectability of a narrowband stimulus depends on
stimulus contrast. Results for the most selective unit in a
pool of 250 unitsVtuned to a broad range of spatial
frequencies and with correlated noise includedVare indi-
cated by the purple symbols. Results for the pooled network
response as approximated in the paper, i.e., by average-
response-based weighting, are shown in green. Results for
the pooled network response produced by simulating 2,500
trials for all signal contrasts and performing trial-by-trial
response-based weighting are shown in black. It is clear
that both pooled response functions outperform the most
selective unit and are more sharply accelerated.
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Consequently, the pooled response functions give rise to
a stronger pedestal effect than the single most selective
unit whether the effects of the pooling are derived from
mean responses or, as would be the case in a real nervous
system, from the trial by trial response strength. Estimated
contrast-discrimination threshold functions are plotted in
Figure A1b, making use of the same color conventions as
in panel a. Discrimination thresholds were derived from a
descriptive functionVdV= bCp

ZqþCqVfitted to the detectability
results shown in Figure A1a (the fits are indicated by the
colored lines in panel a). While the thresholds shown in
green in panel b lie below the thresholds shown in black at
low pedestal contrasts, it is clear that both pooled response
functions produce a stronger pedestal effect than the most
selective unit. In sum, the simplification in determining the
weights is reasonable for the issues discussed in this paper.

Appendix B

To capture the effects of external noise on the contrast
response function of units in our model, we used theory-
based predictions combined with simulations. The basis of
most models of cortical neurons is the concept of linear
receptive field, followed by an instantaneous non-linear
function. Broadband noise introduces stimulus variability
at the preferred spatial frequency and phase of a linear
filter and will thus increase the filter’s response variance.
Because neurons cannot give negative responses, this
increased variance also increases the mean cell response at
low response rates. At high response rates, this increased
variance lowers the mean cell response slightly due to the
non-linearity. To see all this, consider Figure B1, which
shows how the contrast response function of a unit to a

preferred signal changes with different levels of external
noise (panel a shows the mean response, panel b the
variance of the response; lighter symbols refer to higher
noise levels). To obtain these results, the simulated output
of a linear filter was half-wave rectified and passed
through the Naka–Rushton equation (see Equation B1),
without any further rescaling:

Ru;bn cð Þ ¼ max 0;Rf ðcÞ
� �� �n

cn50 þ max 0;Rf ðcÞ
� �� �n ; ðB1Þ

where Rf(c) is the response of a linear filter as a function
of signal contrast expressed as a fraction of the maximal
response. As in Equation 2, the variance of the unit’s
response was proportional to its mean value.
For the unit shown in Figure B1, n equals 2.4 and c50

equals 0.38. We performed simulations for a wide range
of parameter values and noise levels and found that the
results could be captured by resetting the parameters of
the unit’s response function as given by Equation B2 (fits
to the mean response are shown in Figure B1).

Ru;bn
����

cð Þ ¼ rNoise þ cnj$n

c50 þ $cð Þnj$n þ cnj$n
; ðB2Þ

where rNoise is the average noise evoked response, and $n
and $c describe the change of the response exponent and
semisaturation contrast in noise. Based on our simulations,
these three parameters were estimated analytically for
each network unit as a function of external noise level
(this is a free parameter in the model), the response
exponent n, and semisaturation contrast c50 (these are
randomly selected parameters, as explained in Methods).

Figure A1. Average-response-based and response-based pooling. (a) Detectability, dV, expressed as the ratio of the mean response to the
standard deviation, as a function of contrast for the most sensitive unit (purple symbols) in a pool of 250 units, average-response-based
pooling (green symbols), and trial-by-trial response-based pooling (black symbols) on semi-logarithmic coordinates. (b) Contrast-
discrimination thresholds at 75% correct as a function of pedestal contrast on double logarithmic coordinates for the most sensitive unit
(purple), average-response-based pooling (green), and trial-by-trial response-based pooling (black).
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Compared with cortical cell data, the noise activation at
low firing rates predicted by this simple model is too high.
Similarly, the noise suppression at high firing rates is too
low (Carandini et al., 1997). Both failures can be cured by
an additional parameter ! introduced by Carandini et al.
(1997) to capture non-specific suppression effects of
broadband noise, as given by Equation B3.

Ru;bn
����

cð Þ ¼ rNoise
1þ !NC

þ Sel
cnj$n

c50 þ $cð Þnj$n þ cnj$n þ !NCð Þnj$n

 !
:

ðB3Þ

As in Equation 1, Sel expresses the unit’s selectivity.
Parameter values for ! were drawn from an exponential
distribution, appropriately scaled to approximate the
estimates reported by Carandini et al. (1997). At the noise
power chosen for the contrast-discrimination simulations
in the paper, the response to noise alone was on average
approximately four times higher than the spontaneous
maintained discharge, r0. This estimate is reasonably close
to the roughly three-fold elevation found by Carandini
et al. Further, at this noise level, $n = 0.45 (standard
deviation of 0.15 across units) and $c = 0.11 (standard
deviation of 0.03). Figure B2 illustrates the effects of
broadband noise on the contrast response function for
one unit, simulated with the normalization modelVi.e., a

Figure B1. (a) The simulated mean contrast response functions for a given unit with different levels of external noise, making use of
Equation B1 (lighter symbols refer to higher noise levels). Responses are expressed as a fraction of the maximal response. Colored lines
indicate fits of the descriptive model discussed in the text (see Equation B2). (b) The simulated response variance for the same unit.

Figure B2. (a) The contrast response functions simulated with the normalization model for a unit tuned to the signal without noise (green),
in broadband noise (blue), and notched noise (red). Without noise, the excitatory and inhibitory factors of the normalization model are
constant at any given contrast; in broadband noise, both factors increase and show trial-to-trial variation; in notched noise, the response of
the excitatory factor is constant, while the inhibitory factor increases and produces a variable response. (b) Illustration of the effective mean
contrast response functions used in the paper for a given unit without noise (green), in broadband noise (blue), and notched noise (red). This
unit is tuned to the signal frequency. (c) Same as in panel b for a unit that is not sensitive for the signal frequency. Note that the responses to
notched noise and white noise are much more similar for such units.
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narrowly tuned excitatory factor and a broadly tuned divisive
inhibitory factor, both producing variable responsesVand our
approximation, making use of Equation B3.
The effect of notched noise can be inferred from the

logic of the normalization model (Heeger, 1992a, 1992b).
First, consider a unit tuned to the 1.5 octaves wide notch
centered at the signal frequency. Notched noise contains
no power at the unit’s preferred spatial frequency and
phase and will thus not elicit any response by itself.
However, the noise has power at frequencies to which the
broadband inhibitory gain-control pool is tuned. The
normalization model thus predicts that notched noise will
produce non-specific inhibition. Given that noise without
notch elevates the mean cell firing rate, the inhibitory
effect of notched noise is likely to be stronger than the
inhibition provided by white noise. For the simulations in
the paper, the inhibition provided by notched noise was
chosen to be two times higher than the inhibition provided
by white noise. (This factor may also partly capture the fact
that Henning andWichmann, 2007, increased the power in
the pass-bands of the notched noise relative to the white
noise for two of three observers.) Because the inhibitory
response is largely noise driven and thus variable, notched
noise also modifies the response exponent and semi-
saturation contrast. As was the case for broadband noise,
parameters $n and $c used to capture this modification
were estimated for each unit based on the simulations of
the simple model described above (see Equation B1). This
is of course only an approximation but sufficient to
capture the increase of $n and $c with stronger suppres-
sion. This can be seen in Figure B2, which illustrates the
effects of notched noise on the contrast response function
for one unit, simulated with the normalization model and
our approximation, making use of Equation B4.
The effects of notched noise differ for a unit tuned to one

of the pass-bands of the noise (see Figure B2, panel c). In
short, as the selectivity of the unit for the signal decreases,
the notched noise will elicit both excitatory and inhibitory
activation and its effects will gradually approximate the
effects of broadband noise. The effect of notched noise
thus depends strongly on a unit’s selectivity. Equation B4
shows how we implemented all these effects of notched
noise on the contrast response function.

Ru;nn
����

cð Þ ¼ ð1jSelÞrNoise
1þ !NC

þ Sel
cnj$n

c50 þ $cð Þnj$n þ cnj$n þ 1þ Sel½ �!NCð Þnj$n

 !
:

ðB4Þ

At the noise level used for the contrast-discrimination
simulations in the paper, $n = 0.43 (standard deviation of
0.3 across units) and $c = 0.18 (standard deviation of 0.2).
The average modification of the response exponent in
notched noise thus closely resembles the results in white

noise, while the noise-suppression is stronger. For both
parameters, the standard deviation in notched noise is
higher due to the effects of tuning. While this implementa-
tion captures the main effects of notched noise described
above, it is a simplification and at best only an approx-
imation. Nevertheless, this operationalization of notched
noise effects proved to be sufficient to generate plausible
contrast-discrimination data in noise.
For the sake of clarity, the variability in maximal

response rate across units was ignored in this appendix. In
the model simulations discussed in the paper, however,
Equations B3 and B4 were multiplied by each unit’s rmax.
Finally, to estimate a unit’s response variance, we used
the ratio of the variance to the mean simulated in the
simple model (Equation B1) and multiplied this ratio with
the mean responses deduced from Equations B3 and B4.
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