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35

36
37 Introduction

38 Under certain conditions, the ability of a human
39 observers to discriminate correctly which of two observa-
40 tion intervals contains a signal (sometimes called the
41 target) can be improved by adding copies of the signal
42 (usually called pedestals) to both intervals. This effect,
43 known as the pedestal or dipper effect, runs counter to
44 models in which the difference signal required for discrim-
45 ination increases monotonically with background level as
46 predicted by Weber’s Law, in which the signal increases in
47 proportion to the background level, or by the DeVries-Rose
48 square-root law, in which it increases in proportion to the
49 square-root of the background level.
50 The dipper effect is typically obtained in experiments in
51 which the spatial and temporal properties of the signal and
52 pedestal are matched in frequency, phase and orientation.
53 The threshold-versus-contrast (TvC) function (in which the
54 contrast [or modulation] of the signal corresponding to
55 some percentage of correct responses is plotted against

56the pedestal contrast) exhibits a characteristic “dipper”
57appearanceVas pedestal contrast increases from zero, per-
58formance first improves, and then deteriorates at higher
59pedestal levels (see, for example, Figure 1, below).
60The earliest reports of the pedestal effect were for the
61discrimination of a flashed, uniform target superimposed
62on one of two spatially-separated flashed pedestals of the
63same size and duration (e.g., Barlow, 1962a, 1962b;
64Cornsweet & Pinsker, 1965; Whittle & Swanston, 1974),
65or for the discrimination of a grating presented on one of
66two temporally-separated gratings of the same spatial fre-
67quency and orientation (Campbell & Kulikowski, 1966).
68The pedestal effect has received considerable attention
69in sensory research where it has been used as a means of
70investigating the suprathreshold properties of visual
71mechanisms. It has been used extensively in the spatial
72domain to investigate the response characteristics of
73channels or mechanisms that are differentially sensitive
74to spatial frequency and orientation (e.g., Bird, Henning,
75& Wichmann, 2002; Foley & Legge, 1981; Henning &
76Wichmann, 2007; Legge & Foley, 1981; Nachmias &
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77 Sansbury, 1974; Wichmann, 1999; Yang & Makous, 1995).
78 But it has also been used to investigate the properties of,
79 for example, color and luminance mechanisms (e.g.,
80 Chen, Foley, & Brainard, 2000; Cole, Stromeyer, &
81 Kronauer, 1990; Mullen & Losada, 1994; Switkes, Bradley,
82 & De Valois, 1988); and ON- and OFF-channels (e.g.,
83 Bowen, 1995). The effect has also been reported with
84 flickering or drifting gratings (e.g., Anderson & Vingrys,

852001; Boynton & Foley, 1999; Stromeyer, Kronauer, &
86Madsen, 1984) andwith uniform flickering targets (Anderson
87& Vingrys, 2000; Stockman & MacLeod, 1985).
88Here, we use the pedestal effect in the temporal domain
89to investigate the response characteristics of mechanisms
90sensitive to temporal frequency.
91So, by what mechanisms might increasing the pedestal
92contrast in both intervals improve performance? A number
93of more or less plausible explanations of the pedestal effect
94have been proposed (see Solomon, 2009 for recent review).
95Broadly speaking, they can be put into four categories:

96(1) The effect is the result of a specific nonlinear
97transducer function (e.g., Foley & Legge, 1981;
98Legge & Foley, 1981; Nachmias & Sansbury,
991974), such that the early part of the function is
100accelerating and the later part decelerating. The
101accelerating portion generates the dipper, because
102the difference in output between signal-plus-pedestal
103and the pedestal alone is larger than the difference in
104output between the signal alone and no signal, while
105the decelerating portion produces Weber’s Law by
106compression. In some versions, the deceleration is
107produced by a divisive gain control (e.g., Boynton &
108Foley, 1999; Foley, 1994).
109(2) The effect is due to a specific nonlinear transducer
110function combined with a signal-dependent internal
111noise (e.g., Green, 1967; Kontsevich, Chen, &
112Tyler, 2002), such that the accelerating nonlinearity
113produces the dipper at low pedestal levels, while
114the noise produces Weber’s Law at high levels.

115In both categories (1) and (2), the pedestal effect is
116assumed to be a characteristic of a single mechanism.

117(3) Perhaps the most radical proposal is that the effect,
118in spatial vision at least, is due not to the
119characteristics of a single mechanism but to the
120pooled characteristics of many mechanisms with
121non-linear transducer functions that are insufficient
122in themselves to produce substantial dippers. The
123dipper is assumed to be produced by the recruit-
124ment of mechanisms that are mistuned away from
125the signal and pedestal as the pedestal contrast
126first increases (Goris, Wichmann, & Henning,
1272009; Henning & Wichmann, 2007). We refer to
128these models as the “off-frequency-looking” model.
129(4) Another, now somewhat discredited proposal (e.g.,
130Bowen, 1995; Yang & Makous, 1995), is that the
131pedestal, because it is a copy of the test, reduces
132uncertainty about the frequency, phase, timing, and
133location of the signal thereby producing improved
134performance and the dipper (Pelli, 1985).

135Here we use a similar strategy to Henning and
136Wichmann (2007) to evaluate these models, but applied
137in the temporal rather than spatial domain. We measured

Figure 1. Data from the no-noise condition. Signal modulations
corresponding to performance levels of 90% (red triangles), 75%
(green circles), and 60% correct (blue squares) plotted as a
function of the pedestal modulation. For each observer, the
contours of constant performance were derived from Gumbell fits
to the underlying psychometric functions at each pedestal level,
based on at least five points, each of 100 observations (Wichmann
& Hill, 2001a, 2001b). The logarithmic thresholds and their error
estimates were converted to linear scales. The leftmost points
were obtained with no pedestal. Vertical lines indicate T1 standard
deviation derived from the maximum likelihood fits to the
psychometric functions. Observers: GBH (a), HES (b) and AS (c).
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138 thresholds for detecting Hanning-windowed bursts of
139 10-Hz sinusoidal flicker in one of two temporal intervals
140 containing pedestals of the same temporal frequency, phase
141 and duration as a function of pedestal contrast (i.e., TvC
142 functions). Measurements were made under four conditions
143 of external noise: 1) broadband noise, 2) 5-Hz “notched”
144 noiseVthe same broadband noise from which a 5-Hz band
145 of noise centered arithmetically on the signal frequency
146 had been removed, 3) 10-Hz notched noise and 4) no
147 external noise. Comparisons among the no-noise and noise
148 conditions, allow us to evaluate the different models
149 proposed to account for the dipper effect. If off-frequency
150 looking is important in producing the dipper, then the
151 use of notched-noise should minimize the contributions
152 of off-frequency channels and thus destroy the dipper
153 (as Henning and Wichmann (2007) found in the spatial
154 domain). If, on the other hand, uncertainty reduction is
155 important, then, for an ideal observer (for whom the
156 pedestal defines the signal frequency precisely), changing
157 the notch width of the noise should not affect the
158 observer’s performance when the pedestal is present.
159 Because the dipper persists in notched temporal noise,
160 and because performance depends on the notch width, our
161 results are inconsistent with off-frequency looking in the
162 temporal domain and with uncertainty reduction as
163 characterized by the signal-known-exactly (SKE) ideal-
164 observer. Instead, our data can be accounted for by
165 assuming a single channel with an appropriate nonlinear
166 transducer function. Following the early proposals of
167 Delboeuf (1873) and Fechner (1860), we develop a simple
168 nonlinear transducer function that describes our entire
169 data set. The development of this model is described in
170 the final section of the paper. This modeling suggests that
171 the dipper effect cannot be characterized by a simple energy
172 detector. Instead, the required transducer has a steeply-
173 rising threshold non-linearity with an exponent of about
174 six (i.e. three times that of a simple energy detector).
175

176
177 Methods

178 Subjects

179 Two males (aged 50 and 64) and one female (aged 30)
180 participated in this study. The study conforms to the
181 standards set by the Declaration of Helsinki, and the
182 procedures were approved by local ethics committees at
183 University College London.
184

185 Procedure

186 We used a two-interval forced-choice task. On each
187 trial, noise and pedestals (if used) were both presented in
188 two 1-second long observation intervals separated by a
189 500-millisecond pause. The signal was added to one of the

190observation intervals of each trial. The interval that
191contained the signal was randomly selected, so that the
192signal was equally likely to be in the first or second
193interval. Following the second observation interval, there
194was a 1.5 second response interval during which the
195observers indicated, by pressing keys, which interval they
196thought had contained the signal. Auditory signals indi-
197cated the beginning of each observation interval and the
198start of the response interval. Feedback was provided by a
199fourth auditory signal that indicated which observation
200interval had contained the signal. Psychometric functions
201of at least five points of 100 observations each were
202obtained in blocked sessions relating the percentage of
203correct responses to the amplitude of the signal for each
204pedestal level and notch width. These measurements were
205obtained in four conditions of external noise: 1) no noise;
2062) broadband noise, 3) 5-Hz “notched” noise, 4) 10-Hz
207notched noise. The order of sessions was counterbalanced
208within observers.
209

210Apparatus

211Flickering stimuli were presented on an LED-based
212photo-stimulator that allows fine control of the luminance
213of bright uniform fields up to high temporal frequencies
214(Pokorny, Smithson, & Quinlan, 2004; Puts, Pokorny,
215Quinlan, & Glennie, 2005). The output of the LEDs was
216controlled via an M-Audio soundcard, housed in a G3
217Macintosh computer. A circular test field, comprised of
218light from four LEDs (with peak outputs at 460, 516, 558,
219and 660 nm), had an annular surround, comprised of light
220from a second set of four LEDs with peak outputs at the
221same wavelengths. The test field subtended 2 degrees of
222visual angle and the annular surround subtended 8 degrees.
223To minimize the contrast at the border between the central
224and surround fields, each of the surround LEDs in turn was
225perceptually matched to the center LED having the same
226wavelength composition. The relative levels of the four
227central LEDs were chosen such that the fields were
228metamers of the equal-energy spectrum, and appeared
229approximately achromatic. In this study, the luminances
230of the surround LEDs were held constant, and the four
231LEDs illuminating the central test field were modulated
232in-phase to produce variations in luminance. The mean
233luminance of both the surround and the central field was
23430 cd/m2, which was sufficient to guarantee rod saturation.
235

236Specification of stimuli

237The LED spectra were measured with a telescopic
238spectroradiometer (Gamma Scientific, San Diego, CA)
239and used in conjunction with estimated cone sensitivities
240(Stockman & Sharpe, 2000) to calculate the ratio of the
241outputs of the component LEDs required to produce a
242light metameric to equal energy white. The relation
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243 between the intensities specified by the program and those
244 produced by the diodes was established with a radiometer
245 (UDT Instruments, Orlando, FL). A linearizing look-up
246 table was then created to generate a mapping from the
247 level requested in software to the luminance output of
248 each LED. The system calibrated in this way should
249 allow accurate luminance modulations with a resolution
250 of 16.5 bits per channel up to about 100 Hz (Puts et al.,
251 2005). The temporal waveforms were generated digitally
252 and loaded to a buffer (wavetable) using the CoreAudio
253 commands in Mac OS X.
254 Each stimulus had a duration of 1 second, which corre-
255 sponded to 44100 samples at the sampling rate of the
256 soundcard. All temporal waveforms were first generated
257 in software using MATLAB. The 10-Hz signals and
258 pedestals were generated as simple sinusoidal waveforms.
259 The noise waveforms were defined as linear combinations
260 of sinusoids from a set whose frequencies were equally
261 spaced at 1 Hz intervals up to 100 Hz. At each frequency,
262 the amplitudes of both sine- and cosine-phase sinusoids
263 were randomly selected from a Gaussian distribution of
264 zero mean and fixed variance. Broadband noise of this sort
265 is sometimes called Fourier-series band-limited white
266 Gaussian noise. The variance of the Gaussian distribution
267 is proportional to the mean noise-power density of the
268 noise and we describe below how we chose the appro-
269 priate variance. Notched noise was produced by removing
270 either a 10- or 5-Hz band of components from a region
271 centered arithmetically on the 10-Hz signal and pedestal
272 frequency. The signals, in the frequency domain, were
273 then transformed to the time domain.
274 We generated 100 noises in each noise class (meeting
275 the criteria set out below). The noises were stored and, for
276 each observation interval of our two-alternative forced-
277 choice task, we randomly chose a noise from the appro-
278 priate class, each member of which was equally likely to be
279 chosen. The waveform that was displayed was constructed
280 by summing the appropriate signal, pedestal, and noise
281 waveforms, multiplying the resultant waveform by a raised
282 cosine (Hanning) window, rounding, and integerizing the
283 windowed stimulus. The signal and pedestal were always
284 in phase and in cosine phase with the peak of the window.
285

286 Calibration

287 To check the characteristics of the stimuli, a nominally
288 sinusoidally flickering luminance was produced by the
289 diodes and examined with the photometer. The photo-
290 meter produced an electrical signal that followed the
291 luminance input without loss up to about 100 Hz. We
292 examined the harmonic content of a 10-Hz (nominally)
293 sinusoidal flicker by sending the electrical output of the
294 photometer through a wave analyzer (HP 35080A). This
295 established that the stimulus was effectively sinusoidal
296 since its second and third harmonic distortion products
297 were negligible.

298The photometer and the wave analyzer were also used
299to establish the characteristics of the flickering Gaussian
300noise. One-second long examples of the broadband noise
301and the 10-Hz notched noises were generated in MATLAB,
302rounded, integerized, displayed as repeating luminance
303waveforms through the diodes, and observed at the wave
304analyzer as the electrical signals from the photometer.
305We chose the appropriate variance for the generation of
306the Gaussian noise by considering two related criteria:
307First we inspected the output from the diodes in response
308to broadband noise and increased the variance until the
309waveform was only very occasionally limited (clipped) by
310the maximum or minimum output; second, with the
311chosen value of the variance, we looked at the frequency
312spectrum of the notched noise using the wave analyzer.
313Notch depth is adversely affected either by excessive
314clipping (produced by too large a variance) or by insuf-
315ficient dynamic range in the numerical representation prior
316to digital-to-analogue conversion (produced by too small a
317variance). For each noise sample we used, we confirmed
318that our 10-Hz notch had a stop-band in which the noise-
319power density was at least 35 dB below the noise-power
320density in the pass-band. A similar analysis of the 5-Hz
321notches was precluded by the finite bandwidth (1-Hz at
322half-power) of the narrowest filter in the wave analyzer.
323The mean root-mean-squared (r.m.s.) contrast of the 100
324broadband noise samples used was 0.198, with a standard
325deviation of 0.008.
326

327

328
329Results

330Data obtained in the absence of external
331noise

332The psychometric functions relating the percentage of
333correct responses to the logarithm of the depth of signal
334modulation were fit with Gumbel functions using the
335maximum-likelihood procedure of Wichmann and Hill
336(2001a, 2001b). Estimates of the modulation depths
337corresponding to 60%, 75%, and 90% correct responses,
338together with estimates of the variability associated with
339each estimate, were determined from these fits.
340Figure 1 presents conventional threshold vs. pedestal
341functions, called threshold vs. contrast plots or TvC plots.
342Each panel shows, for a different observer, the signal
343modulation (or ripple ratio) corresponding to three different
344performance levelsV90% correct (red triangles), 75%
345correct (green circles), and 60% correct (blue squares)V
346each as a function of the pedestal modulation; no external
347masking noise was used. Where larger than the data
348points, vertical lines indicate approximately T1 standard
349deviation. The results are broadly similar for the three
350observers, and the pattern of results is roughly similar
351across the different performance levels: the contours of
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352 constant performanceVwhich we refer to loosely as
353 “thresholds”Vfirst fall as the pedestal modulation
354 increases from zero, and reach minima well below the
355 “threshold” modulation depth obtained with no pedestal,
356 before rising again. The minima are located at pedestal
357 modulations just above the “threshold” modulations
358 obtained with no pedestal. Comparable “dipper” shapes
359 have been found in many other analogous experiments.
360 In spatial vision, the depth of the dipper and the location
361 of its minimum depend on performance level: the dipper
362 exhibited for low performance levels is deeper and occurs
363 at higher pedestal levels than the dipper exhibited for
364 higher performance levels (Bird et al., 2002; Goris,
365 Wagemans, & Wichman, 2008; Wichmann, 1999). Sim-
366 ilarly, for flicker, we find that the maximum improvement
367 with added pedestal modulation is greater at lower than at
368 higher performance levels and tends to occur at slightly
369 higher pedestal modulations. The change in shape with
370 performance level reflects the slopes of the underlying
371 psychometric functions relating percentage correct to the
372 logarithm of signal modulation, which are steepest at low
373 pedestal levels, where the performance level contours are
374 closely spaced, and most shallow in the vicinity of the dip,
375 where the performance contours are most widely separated.
376 The performance contours become more closely spaced
377 once again on the rising portions of the curves where the
378 pedestals mask the discrimination of the signal roughly in
379 accordance with Weber’s Law.
380

381 Data obtained with external noise added

382 We next consider the same detection and discrimination
383 experiment performed in the presence of the three types of
384 noise: 1) broadband, white Gaussian noise, 2) 5-Hz
385 notched noiseVthe same broadband noise from which a
386 5-Hz band of noise arithmetically centered on the signal
387 frequency had been removed, and 3) 10-Hz notched noise.
388 The three panels of Figure 2 show, separately for each
389 observer, the 75% performance contours in the same
390 format as Figure 1Vthe signal modulation producing 75%
391 correct as a function of pedestal modulation. The black
392 symbols are from the broadband-noise condition, the dark
393 gray symbols from the 5-Hz-notch condition, the light gray
394 symbols from the 10-Hz-notch condition, and the open
395 symbols, from Figure 1, are from the no-noise condition.
396 Error bars indicate approximately T1 standard deviation.
397 For all three observers the results vary systematically with
398 the noise masking condition. Two changes are apparent
399 with increasing notch width. First, the performance for the
400 detection of the signal alone (i.e., the leftmost points in
401 Figure 2) improves. Second, the region of masking by the
402 suprathreshold pedestals begins at lower pedestal levelsV
403 and the pedestal value at which the best performance
404 occurs decreases slightlyVas notch width increases.
405 In Figure 3, we present the 60%, 75% and 90%
406 performance contours for all conditions of the experiment

407The three columns of plots show data for GBH (left), HES
408(middle) and AS (right). Plots in the top row show the
409results obtained with no external noise, and subsequent
410rows show data obtained with notched-noise maskers with
411a 10-Hz notch, notched-noise maskers with a 5-Hz notch
412and broadband noise maskers. Each plot compares data for
413the three performance levels: 60% contours (blue squares),
41475% contours (green circles), and 90% contours (red

Figure 2. Signal modulations corresponding to 75% correct
performance plotted as a function of pedestal modulation. Four
different masking conditions are shown: data obtained with
broadband white Gaussian noise (black circles), broadband noise
from which a 5-Hz notch arithmetically centered on the signal
frequency was removed (dark gray circles), broadband noise with a
10-Hz notch centered on the signal frequency (light gray circles),
and with no noise (open circles, from Figure 1). Error bars were
derived in a sameway as for Figure 1. Observers: GBH (a), HES (b)
and AS (c).

Journal of Vision (2009) 0(0):1, 1–18 Smithson, Henning, MacLeod, & Stockman 5



415 triangles). The solid lines through the data points show the
416 best-fitting predictions of a model simulation described in
417 the section “Development of a non-linear transducer
418 model”.

419There is considerable variability among the observers,
420but many of the differences are due simply to differences
421in the observers’ sensitivities. There are also several
422features of the data that are common to all three observers.

Figure 3. Data from four different masking conditions: no-noise (top row), broadband noise with a 10-Hz notch centered on the signal
frequency (second row), broadband noise with a 5-Hz notch centered on the signal frequency (third row), and broadband white Gaussian
noise (bottom row), for three observers: GBH, HES, AS. In each panel, signal modulations corresponding to performance levels of 90%
(red triangles), 75% (green circles), and 60% correct (blue squares) are plotted as a function of the pedestal modulation. Smooth lines
through the data are the best fitting curves from the non-linear transducer model of Equation 12. Details of simulation and fitting are
provided in the text.
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423 Associated with the improvement in performance level
424 with increasing notch width for the detection of the signal
425 alone (leftmost points), there is an accompanying increase
426 in the separation between the performance contours
427 defined by the data. Thus, increasing notch width causes
428 the underlying psychometric functions to become steeper.
429 One failure of our model predictions (shown by the
430 continuous lines in Figure 3, and described later) is that
431 the predicted contours at the detection threshold are
432 approximately equally separated across the three noise
433 conditions. As we discuss below, the changes we observe
434 are also inconsistent with the uncertainty model. As in
435 Figure 2 for the 75% contour, the contours at 60% and
436 90% also show that the extent of masking decreases with
437 notch width, but that the facilitationVthe dipperVpersists
438 across all conditions.
439 The characteristics of the contours at different perfor-
440 mance levels apparent in the absence of external noise
441 shown in Figure 1 are preserved in the presence of
442 external noise: The size of the dipper depends on
443 performance level, with the smallest improvement for
444 the 90% performance contour and greatest improvement
445 for the 60% contour. For GBH the dipper occurs close to,
446 or slightly above, the detection threshold for the signal
447 alone. This pattern is repeated for HES and AS, although
448 the data are sometimes too noisy to locate the minima
449 precisely. In general, in external noise conditions, the
450 location of the dipper shifts to higher pedestal modu-
451 lations compared to the location of the dipper in the
452 absence of external noise.
453

454

455
456 “Threshold” signal modulation
457 as a function of the combined
458 strength of signal and pedestal

459 Some insight into the results can be obtained by plotting
460 the signal modulation corresponding to some performance
461 level against the combination of that signal modulation and
462 the pedestal modulation (the modulations simply add in the
463 combination because they are of the same frequency and
464 phase). From the point of view of an observer, the task is
465 either a detection or discrimination task, depending on the
466 strength of the pedestal modulation. At low pedestal levels
467 the task seems to the observer to be a detection task
468 because the pedestal alone is never seen, whereas at high
469 pedestal levels it seems to be a discrimination taskVwith
470 the pedestal modulation alone in one interval and the
471 signal-plus-pedestal modulation in the other.
472 Figure 4 shows the data for GBH from Figure 1 (no-
473 noise condition) re-plotted with signal modulation as a
474 function of signal-plus-pedestal modulation. In the top
475 panel the signal modulation corresponds to 60% correct
476 responses, in the center panel, to 75% correct, and in the

Figure 4. Data obtained in the no-noise condition (from Figure 1)
for observer GBH plotted against different co-ordinates: each
panel shows signal modulation as a function of signal-plus-
pedestal modulation for 60% (a), 75% (b) and 90% (c) correct
responses. The extended blue vertical lines in each panel mark
the 95% confidence interval about the signal modulation required
to achieve the appropriate performance level with zero pedestal
modulation. The filled symbol in each panel marks the data point
where the pedestal modulation alone is close to the 60%
“threshold” and the partially filled symbol marks the data point
where the pedestal alone is close to the 90% threshold. The red
diagonal lines show the best (least squares) linear fit to the
rightmost four points in each panel.
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477 bottom panel, to 90% correct. The extended vertical lines
478 (in blue) toward the left in each panel mark the 95%
479 confidence interval around the signal modulation required
480 to achieve that performance level in detecting the signal
481 alone (i.e., with zero pedestal modulation). The approx-
482 imate confidence intervals were obtained from the boot-
483 strap procedure of Wichmann and Hill (2001a, 2001b).
484 The red diagonal lines are the best (least squares) fits to
485 the rightmost four points in each panel.
486 These graphs have several notable features. First, at low
487 pedestal levels, the signal is discriminated when the
488 signal-plus-pedestal modulation reaches the level at which
489 modulation can be detected in the absence of the pedestal.
490 For these pedestals of low modulation depth, the task is
491 essentially a detection task; the pedestal alone is very
492 rarely seen and the only interval with recognizable
493 sinusoidal modulation comprises the pedestal modulation
494 added to the signal modulation. The pedestal effect is
495 produced because, in this region (i.e., for pedestal levels
496 approaching the bottom of the dipper in Figure 1), it is the
497 sum of the pedestal and signal modulation that produces
498 the “threshold” stimulus; the signal modulation needed to
499 reach the “threshold” decreases as the pedestal modulation
500 increases and thus appears as the pedestal or dipper effect.
501 This seems to be the case for all three performance
502 thresholds.
503 Second, a narrow transition region begins at the point at
504 which the modulation of the pedestal alone begins to be
505 “seen”. This transition region is delimited in each panel by
506 the large and small filled symbols, which mark the
507 approximate points on each curve at which the modulation
508 of the pedestal reaches levels at which the pedestal alone
509 should be detected with performance levels of 60% and
510 90%, respectively. In the transition region, the perfor-
511 mance results from a mixture of detection-like trials, in
512 which flicker with the temporal and spatial characteristics
513 of the signal is seen in only one observation interval, and
514 discrimination-like trials in which that flicker is seen in
515 both intervals and the interval containing the more
516 pronounced flicker (or flicker more like that of the signal)
517 is chosen as having contained the signal. This region in
518 Figure 4 is very small and corresponds, in effect, to the
519 width of the psychometric function relating the percentage
520 of correct responses to the depth of signal modulation in
521 the absence of a pedestal.
522 Lastly, at higher pedestal levels, the signal modulation
523 corresponding to a given performance level is propor-
524 tional to the sum of signal and pedestal modulations. The
525 red diagonal lines fitted to the upper three or four
526 discrimination thresholds show the best (least squares)
527 linear fit to the data in that region. The fitted function is of
528 the form:

$M ¼ mð$M þMÞ þ c; ð1Þ
529530 where m is the slope and c the intercept. All three
531 observers produce results of the form of Figure 4 in the

532condition with no external noise. In all cases, the
533intercepts, c, are close to zero. The largest 95% confidence
534interval for the intercept,j0.030 to 0.029, was for the 90%
535performance contour for observer HES; all the remaining
536confidence intervals were within 0.01 of zero. This result
537is important, because it implies that in the regions in
538which performance can be described by Equation 1 it is
539governed, as in many discrimination tasks, by something
540like Weber’s law; and it also means that the Weber
541fraction, $M/M, can be extracted from the slopes of the
542linear fits. Rearranging Equation 1 with c = 0 gives:

$M=M ¼ m=ð1jmÞ: ð2Þ

543544This is, of course, not a general finding, since not all
545contrast discrimination conforms to Weber’s Law.
546In Table 1, we summarize the fits of Equation 1 by
547tabulating the Weber fractions calculated using Equation 2
548and the intercepts. The Weber fractions for modulation
549discrimination when the signal and pedestal have the same
550frequency and are in-phase correspond to the ratio of the
551signal modulation (at some “threshold” performance
552level) to the pedestal modulation. The average Weber
553fractions across the three observers are: 0.102, 0.177, and
5540.247 for the 60%, 75%, and 90% performance contours,
555respectively.
556For the conditions with noise, plots of the form of
557Figure 4 show similar characteristics to those obtained
558without noise. For example, data obtained for HES in the
559broadband noise condition are shown in Figure 5. In
560general, the interpretation of these plots for the conditions
561with external noise is slightly more difficult for two
562reasons: First the external noise introduces more varia-
563bility (evident in the increased widths of the vertical
564blue lines giving the 95% confidence intervals for the

Observer %
Weber
Fraction % “Intercept” t1.1

GBH 60 0.091 60 j.00155 t1.2

75 0.139 75 .00101 t1.3

90 0.176 90 .00696 t1.4

HES 60 0.089 60 .00007 t1.5

75 0.208 75 j.00077 t1.6

90 0.348 90 j.00089 t1.7

AS 60 0.127 60 j.00414 t1.8

75 0.183 75 j.00161 t1.9

90 0.218 90 .00604 t1.10

Average 60 0.102 60 j.00187 t1.11

75 0.177 75 j.00046 t1.12

90 0.247 90 .00403 t1.13

t1.14t1.15t1.16Table 1. Weber fractions obtained at high pedestal levels
corresponding to the percentage correct obtained in the no-noise
condition and the corresponding intercepts of the least-squares
linear fit to the rising sections of plots like those in Figure 4 for
each observer and the average observer.
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565 “thresholds” with zero pedestal levels), and second, the
566 noise requires higher signal levels with the consequence
567 that equipment constraints often preclude achieving high
568 enough pedestal levels to ensure that only data on the
569 rising part of the curve are included in the straight-line fit.
570 [Many disputes over the slope of the rising parts of TvC
571 curves in spatial vision arise because of this problem
572 (Wichmann, 1999)]. In the case of broadband noise, for
573 example, only two of our observers (GBH and HES) appear
574 to have three points on the rising part of their graphs. The
575 best fitting lines again have intercepts close to zero and the
576 average Weber fractions for these two observers are: 0.051,
577 0.096 and 0.149 for the 60%, 75% and 90% performance
578 contours, respectively. That these values are smaller than
579 those obtained in the no-noise condition could well be
580 simply a result of our inability to generate pedestal levels
581 that were high enough to get our observers into the linear

582range of the rising part of the graphs. One further effect in
583the broadband noise data for GBH and AS is a slight
584tendency for performance to improve beyond the transition
585region. This is also the case in spatial vision.
586Of course, although instructive, the graphical represen-
587tations in Figures 4 and 5 are essentially alternative
588representations of the TvC plots shown in the earlier
589figures. The vertical fall of $M with $M + M at low
590pedestal modulations is equivalent to a slope of j1 in the
591logarithmic TvC plots, whereas the linear growth of $M
592with $M + M with zero intercept at high pedestal
593modulations is equivalent to a slope of +1 in the loga-
594rithmic TvC plots. Neither graphical representation
595explains the data; any model that fits the underlying
596psychometric functions must have the characteristics of
597the data in both types of figure.
598We now turn to explanatory models.

599

600
601Discussion

602The motivation behind these experiments was to further
603investigate the properties of the mechanisms that underlie
604flicker perception. Our approach has been to measure TvC
605functions under different conditions of external noise.
606These results enable us to do two things: first, to exclude
607some existing models of the pedestal effect based on off-
608frequency looking in the temporal domain and uncertainty
609reduction as characterized by the SKE ideal-observer; and,
610second, to develop a specific non-linear transducer model
611that can account for the entirety of our data. In this
612section, we discuss existing models.

613Off-frequency looking models

614The term off-frequency looking has been used to
615describe situations in which channels tuned to frequencies
616different from the signal frequency contribute to perfor-
617mance. In a recent study using spatially-varying stimuli
618and noise, Henning and Wichmann (2007) found that the
619dipper effect disappeared in notched broadband masking
620noise. They interpreted this as evidence that the pedestal
621effect results not from the characteristics of an individual
622spatio-temporal channel or mechanism, but rather from
623the way in which information is combined across diversely-
624tuned channels; i.e., observers rely on off-frequency
625looking in the region of the dipper (but see also Goris
626et al., 2009). However, contrary to these findings, we find
627that with temporally-varying stimuli the dipper effect
628survives in notched masking noiseVa result that is
629inconsistent with models in which observers use informa-
630tion from channels tuned to different temporal frequencies.
631Our results could be taken to imply that the activity of
632multiple mechanisms is not a necessary condition for the

Figure 5. Data obtained in the broadband noise condition (from
Figure 3) for observer HES plotted in the same format as Figure 4.
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633 generation of the dipper, in which case they would pose a
634 problem for off-frequency looking models, in general.
635 However, off-frequency looking across spatial-frequency
636 channels cannot be excluded by the results of our
637 experiment.
638 The off-frequency looking model in spatial vision can
639 be preserved by supposing that there is something
640 fundamentally different between channels sensitive to
641 temporal frequency and those sensitive to spatial fre-
642 quency. One well-known difference is that there are fewer
643 temporal frequency channels than spatial ones. Most
644 estimates suggest two, or possibly three, flicker mecha-
645 nisms (Boynton & Foley, 1999; Hess & Snowden, 1992;
646 Levinson, 1960; Mandler & Makous, 1984; Roufs, 1974;
647 Watson, 1986). By contrast, there are likely to be many
648 spatial frequency channels (Blakemore & Campbell,
649 1969; Campbell & Robson, 1968; De Valois & De Valois,
650 1988; Graham & Nachmias, 1971; Henning, 1988;
651 Henning, Hertz, & Hinton, 1981). Differences in channel
652 numerosity alone, however, cannot explain why individual
653 temporal frequency channels can sustain the full dipper
654 effect, but individual spatial-frequency channels cannot.
655 One possibility is that the temporal frequency channels
656 have different underlying transducer functions, perhaps
657 with a harder threshold nonlinearity, and perhaps medi-
658 ated or limited by mechanisms earlier in the visual system
659 than the emergence of spatial frequency channels.
660 It is also possible that the flicker response to our
661 spatially-uniform flickering disc is mediated by a family
662 of spatio-temporal channels optimally tuned to different
663 (low) spatial frequencies. If the transducer functions of
664 these spatial-frequency sensitive channels are similar to
665 those tuned to the higher spatial frequencies investigated
666 by Henning and Wichmann (2007), then the dipper that
667 we find might also result from pooling across the spatial
668 frequency domain.
669

670 Uncertainty reduction models

671 TvC functions measured under different conditions of
672 external noise have also allowed us to evaluate explana-
673 tions of the dipper effect based on uncertainty reduction.
674 Such explanations suppose that the improvement in
675 performance in the presence of the pedestal results from
676 the pedestal improving the observer’s knowledge of the
677 characteristics of the signal (Burgess, 1985, 1990; Green
678 & Swets, 1966; Pelli, 1985).
679 Uncertainty reduction models of the pedestal effect are
680 typically assessed by comparing human performance with
681 that of the ideal observer for a signal-known-exactly
682 (SKE) (Burgess, 1985, 1990; Pelli, 1985). An ideal detec-
683 tion process takes advantage of full knowledge of the
684 signal’s waveform to filter out irrelevant frequencies and
685 phases. Our unfiltered noise stimuli consist of sine and
686 cosine components at 100 frequencies, each having iden-
687 tical independent Gaussian distributions of amplitude over

688trials so that the stimulus on a given trial defines a point in
689a 200 dimensional space. For a known signal, only one of
690the 200 dimensions is relevant, and the noise components
691for the other 199 dimensions can be ignored. But we show
692that this does not happen.
693The ideal observer can be realized by using as the
694decision axis the output of a device that calculates the
695cross-correlation of the input (noise alone or signal plus
696noise) with a copy of the known signal (Green & Swets,
6971966; van Trees, 1968). For sinusoidal signals, a cross-
698correlation mechanism is sensitive to only one component
699of the noiseVthat component having the same frequency
700and phase as the signal. Changing the width of a notch
701centered on the signal frequency has no effect on a cross-
702correlation receiver’s performance and thus, if the cross-
703correlator is an adequate model of human behavior,
704changing notch widths should not affect human perfor-
705mance which, for both our notch widths, should be the
706same as having no external noise at all.
707Our data, however, consistently show that performance
708varies systematically with the noise-masking condition.
709As described in the Results section, with increasing notch
710width the performance for the detection of the signal alone
711improves, and the underlying psychometric functions
712become steeper. These results are inconsistent with the
713behavior of the SKE ideal observer and indicate that the
714mechanism detecting the flicker responds to flickering
715noise of broad bandwidth rather than to a narrow band or
716to a single noise component like the ideal observer for the
717signal-known-exactly.
718At the other extreme, if nothing is known about the
719frequency and phase of the signal, no such pruning of
720the stimulus space is possible; a stimulus located far from
721the origin in any direction is more likely to have
722originated from a signal plus noise rather than from noise
723alone, so the appropriate decision axis for an unknown
724signal is distance from the originVthe square root of the
725sum of squares of the sine and cosine amplitudes at all
726frequencies, which is monotonically related to the total
727flicker energy of the stimulus. We consider the energy
728detector subsequently.
729Between the extremes of the SKE ideal observer and the
730energy detector there are many possible forms of
731uncertainty reductionVthe coarse temporal-frequency
732discrimination of Mandler and Makous (1984), or the
733partition into ‘agitation’ as opposed to the luminance
734‘swell’ visible at lower modulation frequencies (Roufs &
735Blommaert, 1981) suggest severalVbut their exploration
736is beyond the scope of this paper.
737

738Non-linear transducer models

739We argue that our results are broadly consistent with
740the behavior of a single mechanisms characterized either
741by a specific nonlinear transducer function (e.g., Foley &
742Legge, 1981; Legge & Foley, 1981; Nachmias & Sansbury,
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743 1974), or by a specific nonlinear transducer function
744 combined with a signal-dependent internal noise (e.g.,
745 Green, 1967; Kontsevich et al., 2002). In order to support
746 this argument we next develop a specific non-linear
747 transducer function that can account for the entirety of
748 our data measured with and without masking noise.
749

750

751
752 Development of a non-linear
753 transducer model

754 In this section, we use our entire data set, which is
755 shown as symbols in Figure 3, to refine and develop a
756 single-mechanism non-linear transducer model. However,
757 rather than develop some arbitrary process, our strategy
758 has been to constrain the modeling by starting with
759 classical functions proposed by Delboeuf (1873) and
760 Fechner (1860). The predictions of the developed model
761 are shown by the continuous lines in Figure 3.

762 Data obtained without external noise
763 Fechnerian schemes for Weber’s Law

764 We consider first the data obtained without external
765 noise, the salient features of which are the approximate
766 adherence to Weber’s Law for large pedestal modulations,
767 and the deviation from Weber’s law characterized by the
768 ‘dipper’ for near-threshold pedestal modulations.
769 Weber’s Law characterizes the relation between stimulus
770 magnitude, M (in our case, the pedestal modulation) and
771 the difference in magnitude, $M (in our case, the added
772 signal modulation) that is needed to make the combined
773 modulation M + $M just noticeably different from M. In
774 its simplest form, the Weber relation is $M = wM, where
775 the proportionality constant, w, is called the Weber fraction.
776 Fechner (1860) showed how the above form of
777 Weber’s Law could result from a logarithmic nonlinearity
778 in the sensory response: On the assumption that all just-
779 noticeable differences correspond to a constant difference
780 in a sensory response $R, where $R = $M/M, Equation 3
781 follows by integration:

RðMÞ ¼ logeðMÞ þ C: ð3Þ

782783 Equivalently, with loge(MV) = jC (where MVis the value
784 of M for which R(M) = 0), Equation 3 becomes:

RðMÞ ¼ logeðM=MVÞ: ð4Þ

785786 The black curve of Figure 6 shows this relationship, for
787 MV= 0.1, with M on a linear scale in the upper panel and
788 on a logarithmic scale in the lower panel. Now $R, the

789difference in R corresponding to a just noticeable stimulus
790difference $M = wM, is always loge(1 + w), independent
791of M, as shown in the derivation of Equation 5:

RðM þ $MÞ ¼ R½ð1þ wÞM�;
¼ loge½ð1þ wÞM=MV�
¼ RðMÞ þ logeð1þ wÞ:

ð5Þ

792793Fechner did not provide a statistical account of Weber’s
794Law applicable to forced-choice measures of discrimina-
795bility. But if we make the standard assumption that, on

Figure 6. Response output (R) predicted as a function of mod-
ulation input (M) for various input-output schemes. Fechner’s
(1860) logarithmic input-output nonlinearity, which is given by
R = loge(M/M V)Vsee Equation 4Vis shown for MV= 0.1 as the
black continuous lines in each panel. Note that below M = MV, the
response becomes negative, and is truncated in Equation 7. The
modification of the nonlinearity by Delboeuf (1873) that keeps R
positive, which is given by R = loge(1 + M/M V)Vsee Equation 9Vis
shown for M V= 0.1 as the red continuous lines in each panel. Lastly,
a series of functions of the form R = loge(1 + [M/M V]n ])1/nVsee
Equation 10Vare shown as the blue continuous lines for MV= 0.1.
From left to right n = 1.3, 2, 4, 10 and 100. As n increases, the
transition at MV= 0.1 becomes increasingly abrupt (or hard). The
lower panel is simply a semi-logarithmic version of the upper panel.
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796 each observation interval of a trial, a logarithmically
797 compressed neural signal deviates from its expected value
798 R(M) = loge(M/MV) by the addition of Gaussian noise
799 having a standard deviation, A, independent of R (i.e., we
800 assume the internal noise after the transducer is constant),
801 then equal differences in R (and correspondingly equal
802 fractional increases in M) will be detected with equal
803 reliability whatever the starting value of R.
804 This provides a statistical and mechanistic “neo-
805 Fechnerian” basis for Weber’s Law. By this account,
806 the Weber fraction w is set by the noise standard
807 deviation A, which has the same units as R and can be
808 thought of as the equivalent root-mean-squared (r.m.s.)
809 variation in the stimulus modulation from observation-
810 interval to observation-interval, expressed as a fraction of
811 the mean modulation M. The difference in R between two
812 intervals with modulations M and (1 + w)M is distributed
813 with standard deviation ¾2A around its mean of loge(1 + w),
814 which is approximately w when w is small. Referring this
815 to the cumulative Gaussian distribution, A is equal to the
816 Weber fraction w for a criterion of 76% correct 2AFC
817 performance.
818

819 Generalizing Fechner: Hard threshold model

820 R(M) as defined above decreases smoothly toward zero as
821 the modulation M decreases to MV. But when M is less than
822 MV, R becomes negative, and it becomes increasingly
823 negative without limit as M approaches zero (as indicated
824 by the black curve of Figure 6). Fechner (1860) dealt with
825 this unwelcome feature of the log transform by suggesting
826 that the negative values of R correspond to ‘unconscious
827 sensations’ that are all introspectively equivalent to one
828 another, since none are consciously registered. As Fechner’s
829 contemporaries were quick to point out (e.g., Müller, 1878),
830 a simple and natural alternative proposal is that the sensory
831 response R simply remains zero for all M G MV. With this
832 assumption, Fechner’s log transform is truncated, replacing
833 the negative values by zero (i.e., the lower-most blue line in
834 Figure 6). The threshold modulation for eliciting a nonzero
835 response, MV, divides the response-modulation function into
836 two regions. Below MVthe response is zero, above MVit is
837 positive and logarithmically compressed (though, approx-
838 imately linear just above threshold where M is not much
839 greater than MV):

R ¼ f0 for M e MV
flogeðM=MVÞ for M 9 MV; ð6Þ

840841 or equivalently,

R ¼ max½0; logeðM=MVÞ� ð7Þ

842843 Just as the log transform provides a Fechnerian basis for
844 Weber’s Law, the threshold nonlinearity atMVin Equation 7

845provides a Fechnerian basis for the dipper. All subthreshold
846modulations M G = MVyield the same (zero) response, so
847pedestal and signal modulations that by themselves produce
848zero response can combine to produce a modulation that is
849discriminable from the (zero) response generated by the
850pedestal alone.
851With the assumption introduced above, that the
852response R is contaminated by additive Gaussian internal
853noise of fixed variance, Equation 7 predicts performance
854in our experiments fairly well. Figure 7 shows the data for
855observer HES (replotted from the center panel of Figure 1)
856and the solid lines show the performance contours
857predicted by the model, and fitted with MVand A as free
858parameters, estimated iteratively by using MATLAB’s
859fminsearch function (based on the Nelder-Mead algo-
860rithm) to minimize the mean squared error of prediction in
861loge(M). On each iteration, Equation 7 was used to
862evaluate the mean response, Rp for each experimental
863pedestal modulation, Mp (assuming the trial value for MV);
864the mean signal-plus-pedestal response required for
865criterion discrimination performance was then obtained
866as Rcrit = Rp + ¾2Azcrit, where zcrit is the standard normal
867deviate corresponding to the criterion percent correct,
868respectively 0.253, 0.674 and 1.282 for 60%, 75% and
86990% correct responses. Equation 7 was inverted to
870determine the total modulation of signal and pedestal
871Mcrit needed for the response Rcrit, and then the required
872signal modulation Ms was obtained as Ms = Mcrit j Mp.
873Comparable fits were obtained for the other two observers,
874AS and GBH. The dippers predicted by this hard-threshold
875model tend to be a little deeper than ones observed, and the
876predicted psychometric functions with weak pedestals are
877slightly steeper than observed, as reflected in the tight
878spacing of the contours for different performance levels. But
879the transition from steep psychometric functions with weak
880pedestals to shallower ones with large pedestals is well

Figure 7. Data obtained in the no-noise condition (from Figure 1)
for observer HES. Solid lines through the data are the best fitting
curves from the hard-threshold model of Equation 7. Details of
fitting are provided in the text.
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881 predicted. The free parameters for the predictions of Figure 7
882 are MV= 0.0075, and A = 0.118.
883

884 Generalizing Fechner: Small-signal linearity

885 In Fechner’s time the dipper was neither experimentally
886 recognized nor theoretically anticipated, but it was clear
887 that Weber’s Law had to be modified to accommodate
888 small background stimulus magnitudes, since the simple
889 formulation $M = wM implies discriminative capacity that
890 improves without limit as background magnitude is
891 decreased, contrary to observation. For many discrim-
892 ination tasks, where no dipper is observed, a modified
893 form of Weber’s Law applies: the detectable stimulus
894 increment has a progressive, linear relation to the
895 combination of background stimulus magnitude M and a
896 constant MVto which it is added:

$M ¼ wðM þMVÞ: ð8Þ

897898 In this formulation, MVis no longer the stimulus associated
899 with zero response. In early discussions of intensity
900 discrimination (Delboeuf, 1873), MVwas regarded as the
901 equivalent intensity of an effective background stimulus
902 or ‘intrinsic light,’ always present and added to any
903 external stimulus.
904 Delboeuf (1873) proposed an amendment to Fechner’s
905 logarithmic formula to make it consistent with this ‘linear
906 generalization’ (Luce, 1959) of Weber’s Law. This he did
907 by simply substituting (M + MV) for M in Fechner’s
908 logarithmic formula, yielding:

RðMÞ ¼ loge½ðM þMVÞ=MV�
¼ loge½1þM=MV�: ð9Þ

909910 The red curves in both panels of Figure 6 depict this
911 relation. As can be seen, zero response to zero stimulus is
912 still implied, but there is no sub-threshold dead zone.

913

914 Further generalization to incorporate intermediate
915 (soft threshold) cases

916 The hard threshold of Equation 7 and the small-signal-
917 linearity of Equation 9 can both be subsumed within a
918 ‘soft threshold’ class of models that allow the gradient
919 dR/dM to increase with various degrees of smoothness in
920 the near-threshold range:

R ¼ logef½1þ ðM=MVÞn�1=ng
¼ loge½1þ ðM=MVÞn�=n: ð10Þ

921922 Here the new parameter, n adjusts the “hardness” of the
923 threshold while MVno longer necessarily corresponds to
924 intrinsic light. Equations 7, 9 and 10 are asymptotically

925equivalent. The family of curves plotted with blue lines in
926Figure 6 show R as a function of M using Equation 10, for
927different values of the parameter n.

928

929Relation to other non-linear transducer models

930The three components of the models introduced here are
931also found in standard non-linear transducer models of the
932dipper effect (e.g., Foley & Legge, 1981; Nachmias &
933Sansbury, 1974; Wichmann, 1999): (i) a non-linear relation
934between stimulus modulation and some internal response, R;
935(ii) fixed internal noise added to R; and (iii) a decision
936mechanism. The shape of the predicted TvC function is
937strongly determined by the form of the response function
938provided the noise that limits the observers’ behavior does
939not precede the nonlinearity (Lasley & Cohn, 1981; Peterson
940& Birdsall, 1953) and the dipper is typically modeled, as it is
941here, by assuming a response nonlinearity that is accelerative
942in the region of MV. In Equation 10, just as in Equation 7,
943MVis in that sense the “threshold” modulation, even though
944in Equation 10, a stimulus less than MVcan elicit a response,
945and may be detectable without a pedestal if w G 1.

946

947The response function and performance contours:
948How hard a threshold?

949The two noted shortcomings of the predictions of Figure 7
950can be alleviated by assuming a less than ideally-hard
951threshold through the appropriate choice of n in Equation 10.
952Softening the assumed threshold nonlinearity in Equation 10
953rounds off and slightly elevates the bottom of the dipper, and
954also increases the predicted separation of the performance
955contours when the pedestal is sub-threshold or absent. With
956no pedestal, and small M, the contour spacing in a
957logarithmic plot is reduced when n is high, since the more
958accelerated the response function, the less is the change in
959stimulus modulation needed for a criterion change in
960response. But for pedestal modulations M d MV, where
961Weber’s Law applies (at least asymptotically) for any n, the
962signal modulation must increase the natural log of the total
963modulation by ¾2Azcrit, making the contour spacing wider
964and independent of n.
965Equation 10 was used to fit the data for all subjects for
966the conditions where there was no external noise (assum-
967ing internal additive noise as before). All three parameters
968(MV, A and n) were varied iteratively for a best (least-
969squares) fit. The best fitting values of n were strikingly
970high (8, 7, and 5 for HES, AS and GBH, respectively),
971implying a very abrupt “threshold” nonlinearity. The large
972values of n that were required to fit the data illustrate the
973common failure of energy detectors (n = 2) to fit data
974of the sort we obtained (Wichmann, 1999). A value of
975n = 2 generates predictions that are obviously inaccurate
976(0.14 r.m.s. error in log10 modulation) in two respects: the
977dipper is clearly too shallow, and the spread between high
978and low criteria when no pedestal is present is too wide.
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979 The exponents and fitting errors for the different
980 subjects don’t differ significantly, and on the basis of the
981 pooled data the most likely exponent is about 6. But any
982 value greater than about 3 gives a reasonably good fit to
983 the data.
984

985

986 Data obtained with external noise added

987 A goal of these experiments was to analyze the detection
988 process by investigating the ability of noise components of
989 a range of different temporal frequencies to interfere with
990 detection. To incorporate the effects of noise in our model,
991 we assume that flicker is encoded as an energy-related
992 quantity. Thus, information about the frequency and phase
993 of the flicker is lost. Our limited ability in temporal-
994 frequency discrimination (Mandler & Makous, 1984)
995 supports this scenarioVat least for relatively high fre-
996 quencies, which appear as what Roufs and Blommaert
997 (1981) call ‘agitation’ (as opposed to the luminance
998 ‘swell’ visible at lower modulation frequencies).
999 Instead of deriving the flicker energy E from the
1000 amplitudes of the 200 Fourier components of the stimulus,
1001 it can be obtained directly as the sum of the squares of the
1002 time-varying excursion in relative luminance:

$Lt=Lave ¼ ðLt j LaveÞ=Lave; ð11Þ

10031004 which, by Parseval’s Theorem, is proportional to the sum
1005 of squares of the Fourier component amplitudes. Thus in
1006 the absence of external noise, E is proportional to the
1007 square of the signal amplitude, which is half the square of
1008 the modulation depth M in Equations 7, 9 and 10. Those
1009 equations can therefore be restated in terms of E/EVinstead
1010 of M/MV, with E = M2/2 and the exponent n replaced by
1011 n/2, so that the best fitting exponent of n = 6 becomes
1012 n = 3 thus:

R ¼ logeð½1þ ðE=EVÞ3�1=3Þ: ð12Þ

10131014

1015 Whichever way the equation is expressed, the modu-
1016 lations are squared before the mean or sum is taken, and
1017 the sum is then subjected (approximately, in the near-
1018 threshold range, E G= EV) to a power-law (in this case a
1019 cubic) transform. But precise squaring of the deviations
1020 before integration is not critical to the predictions of
1021 energy-detection schemes, so long as the model prevents
1022 cancellation of positive and negative deviations. The
1023 energy detector is in this sense representative of a family
1024 of ‘rectified transient’ detectors. When only external noise
1025 has to be considered, all detectors that base decisions on a
1026 monotonic function of energy perform equivalently
1027 (Lasley & Cohn, 1981; Peterson & Birdsall, 1953) and
1028 are effectively energy detectors. But if significant noise is

1029added after the non-linearity the exponent in Equation 12
1030becomes critical. As noted above, linearity with energy
1031(an exponent of 2 in Equation 10, or 1 in Equation 12 does
1032not yield visually acceptable fits; linearity with modula-
1033tion (halving the exponent) is even worse, predicting (in
1034the absence of external noise) no dipper at all; but an
1035energy detector with cubic response growth (Equation 12)
1036gives a good account of our results without external noise.
1037We consider next whether the energy-cubed model can
1038predict performance with external noise as well.

1039Simulation methods

1040Thresholds in noise were estimated by simulating
1041individual trials. The total noise energy E on any trial,
1042expressed as a multiple of the expected energy of each
1043noise component, is a sample from the chi-square
1044distribution with the degrees of freedom equal to the
1045number of independent noise components (e.g., 200 for
1046the no-notch noise). When a signal or pedestal is present,
1047the flicker energy is a sample from the non-central chi-
1048square distribution, where the non-centrality parameter is
1049the energy due to the sum of pedestal and signal. For each
1050simulated presentation, the stimulus energy was generated
1051by a random draw from the appropriate distribution, and
1052the resulting response was obtained from Equation 12.
1053Independent Gaussian internal noise of standard deviation
1054A was then added to the responses for each of the two
1055presentations in a simulated 2AFC trial, and the decision
1056was counted as correct if the response to the signal
1057presentation was greater than to the no-signal presenta-
1058tion. We adopted the values for MVand A that best fit the
1059no-noise data for each subject, and a threshold hardness
1060exponent n = 3 in accordance with Equation 12.
1061Simulations were run on a range of test modulations
1062spanning the full range of the psychometric function, with
106310000 simulated trials per test modulation per pedestal,
1064and the test modulations required for criterion perfor-
1065mance were estimated by interpolation. For observers
1066GBH, HES and AS, the best-fitting values of MVwere
10670.0165, 0.0081 and 0.0226 respectively, and the best-
1068fitting values of A were 0.1761, 0.2314 and 0.1961.

1069

1070The critical band

1071Predictions for thresholds in noise depend on the
1072bandwidth over which the noise energy is integrated.
1073The simplest energy detector, where all noise frequencies
1074are weighted equally, is implausible at the outset, since
1075the highest frequencies in the 100-Hz noise band are
1076invisible at our mean luminances, and although possibly
1077present in neural responses (Hawken, Shapley, & Grosof,
10781996; Lee, Sun, & Zucchini, 2007; Shady, MacLeod, &
1079Fisher, 2004), are unlikely to contribute much masking.
1080Moreover, the calculated performance assuming full
1081sensitivity to all noise frequencies was vastly inferior to
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1082 what we observed. This failure of prediction can be
1083 corrected by supposing that the energy computation is
1084 preceded by considerable filtering of the temporal lumi-
1085 nance waveform, with a filter frequency response either
1086 completely determined by the temporal CSF or perhaps (if
1087 the signal is not completely unknown) also influenced by
1088 proximity to the signal frequency. This general structure
1089 (filter followed by rectification) is inherited from prior
1090 models, notably those of Goris et al. (2008), Rashbass
1091 (1970), and Roufs and Blommaert (1981).
1092 For the model, we adopted a parametrically specified
1093 smooth passband shape, with a peak at the signal
1094 frequency (10 Hz) and adjustable width. A linear temporal
1095 filter was assumed, multiplying the effective modulation at
1096 frequency f by an attenuation factor:

Aðf Þ ¼ ½ð f=10Þexpð1j f=10Þ�N: ð13Þ
10971098

1099 The parameter N is the exponent of the rising low-
1100 frequency part of the modulation sensitivity function. The
1101 high frequency cutoff is also steeper for large N, so
1102 increasing N makes the passband narrower, preserving full
1103 transmission at 10 Hz. The bandwidth-narrowing expo-
1104 nent N was determined iteratively, with a complete
1105 simulation run for each iteration.
1106 Values for N between 1 and 2 gave a good account
1107 of the data (Figure 3 shows the model predictions for
1108 N = 1.4, with a root mean square prediction error of 0.116).
1109 Themain features of the data are captured in the predictions
1110 shown in Figure 3, and the deviations from prediction are not
1111 very consistent across subjects. Appropriate choice of N
1112 yields good estimates of the overall amount of masking for
1113 the notch noises as well as for the broadband noise. The
1114 rightward shift of the dipper in the external noise conditions
1115 is also predicted (perhaps over-predicted) by the model,
1116 because threshold is set by total noise at the output, and the
1117 contribution of external noise to this total is greater for weak
1118 pedestals, where the gradient of the function relating energy
1119 to output (Equation 12) is steep. The required passband of
1120 the early filter is quite broad, ranging from about 3 to 25 Hz
1121 at half-height. This is quite comparable with the width of the
1122 temporal modulation sensitivity function, although the peak
1123 and width of that function vary considerably with the
1124 conditions of observation (Kelly, 1977; Robson, 1966). The
1125 filter bandwidth is, however, narrower than the bandwidth at
1126 the retinal output, which exceeds the psychophysical detec-
1127 tion bandwidth (Lee et al., 2007). Evidently, most if not all of
1128 the visible noise is effective in reducing sensitivity to the test
1129 signal, as if the observer’s decision is based on the total
1130 visibility-weighted flicker energy integrated over frequency.
1131

1132 Internal luminance noise

1133 To provide an account of Weber’s Law for flicker
1134 discrimination (pedestal-aided detection) we have
1135 assumed that internal noise is added to the neural
1136 representation of flicker after the nonlinear transform of

1137Equation 10. This is equivalent to assuming in the Weber
1138region that the internal noise before the transducer grows
1139according to eM. But internal noise may also be introduced
1140in the form of random fluctuations in signals representing
1141luminanceVnoise present in the input to the stages
1142responsible for rectification and compressive nonlinearity.
1143Although Figure 3 shows that such noise need not be
1144invoked to provide an approximate account of the
1145detection thresholds, it is expected a priori and indeed
1146provides an important functional justification for threshold
1147nonlinearity, as the nonlinearity would be helpful in
1148rejecting small inputs that are likely to be due to internal
1149noise at the input to the nonlinear stage (Morgan, Chubb,
1150& Solomon, 2008; Simoncelli & Adelson, 1996).
1151The addition of small amounts of internal luminance
1152noise does improve the hard threshold model, by appro-
1153priately increasing the range of uncertain vision (the
1154separation of the performance contours) when the pedestal
1155is absent or sub-threshold, thereby correcting one of the
1156failings of that model seen in Figure 3. But too much
1157internal luminance noise tends to obliterate the dipper, just
1158as external noise does.
1159
1160

1161

1162
1163Summary

1164Psychometric functions relating the percentage of
1165correct responses to the depth of modulation of a 10-Hz
1166sinusoidally flickering stimulus were measured in standard
1167two-alternative forced-choice experiments under various
1168conditions of external noise. Our results are broadly
1169inconsistent with uncertainty reduction and off-frequency
1170looking explanations of the dipper effect and with a strict
1171energy detector. Instead, they suggest that the dipper
1172effect reflects some form of nonlinear transducer function
1173within a single channel or mechanism. We have devel-
1174oped a specific non-linear transducer (starting with
1175Fechner’s early insight) that economically accounts for
1176the entirety of our data set, with and without noise.
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