Vision: Introductory Lecture
2017

Prof Mitch Glickstein
The Explanation of the Scheme.

1. An explosion at point T, directly towards the left, produces two rays, one from the left side of the point T, and the other from the right side of the point T.
2. The rays pass through a medium and are reflected towards the right side of the point T, and then pass through a medium again, and are finally reflected towards the left side of the point T.
3. The reflected rays are divided into two parts, one part passing through the medium again, and the other part passing through the air.
4. The reflected rays are then refracted towards the right side of the point T, and finally pass through the air again.
5. The refracted rays are then divided into two parts, one part passing through the air again, and the other part passing through the medium again.
6. The refracted rays are finally reflected towards the right side of the point T, and then pass through a medium again, and are finally reflected towards the left side of the point T.
7. The reflected rays are then divided into two parts, one part passing through the medium again, and the other part passing through the air.
8. The reflected rays are finally refracted towards the right side of the point T, and finally pass through the air again.
9. The refracted rays are then divided into two parts, one part passing through the air again, and the other part passing through the medium again.
10. The refracted rays are finally reflected towards the left side of the point T, and then pass through a medium again, and are finally reflected towards the right side of the point T.

Note: The above explanation is a simplified version of the original description.
“It becomes necessary to suppose the number limited, for instance to three principal colours....”
"It is now more than twenty years since I was first affected with the peculiar state of vision, to which I allude, in consequence of violent exercise I had taken for two or three hours before. I suddenly found that I could see but half the face of a man whom I met; and it was the same with respect to every object I looked at. In attempting to read the name Johnson over a door, I only saw 'SON; the commencement of the name being wholly obliterated to my view."

(Preliminary communication.)

In further illustration of Laugery's generalisation that the effect of adrenalin upon plain muscle is the same as the effect of exciting the sympathetic nerves supplying that particular tissue, it is found that the secretion of the pituitary gland is increased by excitation of the sympathetic nerves and by the injection of adrenalin. The adrenalin excited the pituitary gland in the usual way, and the pituitary gland is excited by the sympathetic nervous system. The secretion of the gland is increased by the excitation of the sympathetic nerves.

Therefore it seems to be that adrenalin excites the sympathetic system, and is dependent upon the sympathetic system. But when adrenalin is injected, the pituitary gland is excited by the sympathetic system, and the pituitary gland is excited by the sympathetic nervous system.

The removal of the adrenalin glands. By E. B. Anderson, M.D.

(Preliminary communication.)

The adrenalin glands have been removed in man and animals. To remove them the spleen is drawn downwards and upwards and the hit.
Fig. 5. Bain's modification of the original experiment performed by Loewi in 1901. At the left is represented a reservoir of salt solution from which there is a passage to the donor heart (D); pressure from the reservoir assures a continuous flow of the solution through that heart to the recipient heart (R). The donor heart still has its proper nerves. Each heart is attached to a writing lever.

Below are the records of the two hearts, donor and recipient. When the vagal fibres of the donor were stimulated (S), there was a prompt arrest of that heart (D), and later a slowing and arrest of the recipient heart (R), with gradual recovery. Time (T) is recorded in 2-second intervals. (Bain, 1925.)